Regret, Games, and Boosting

a Reverie of Gambles and Bounds

Nicolò Cesa-Bianchi

Università degli Studi di Milano Politecnico di Milano

Joint work with...

Marco Bressan UNIMI

Yishay Mansour Tel Aviv & Google

Nataly Brukhim IAS Princeton

Shay Moran Technion & Google

Emmanuel Esposito UNIMI & IIT

Max Thiessen TU Wien

lacktriangledown Finite sample $\mathcal X$ of datapoints with binary labels $f:\mathcal X \to \{-1,1\}$

- ▶ Finite sample \mathcal{X} of datapoints with binary labels $f: \mathcal{X} \to \{-1, 1\}$
- \triangleright We know that simple explanations of (\mathcal{X}, f) have good predictive power

- ▶ Finite sample \mathcal{X} of datapoints with binary labels $f: \mathcal{X} \to \{-1, 1\}$
- \blacktriangleright We know that *simple* explanations of (\mathcal{X}, f) have good predictive power
- ▶ Fix a simple (e.g., low VC-dimension) class of $\{-1,1\}$ -valued functions

- ▶ Finite sample \mathcal{X} of datapoints with binary labels $f: \mathcal{X} \to \{-1, 1\}$
- \blacktriangleright We know that *simple* explanations of (\mathcal{X}, f) have good predictive power
- ▶ Fix a simple (e.g., low VC-dimension) class of $\{-1,1\}$ -valued functions
- ▶ Simple explanations: (convex) combination of functions in the class whose sign correlates well with f on the sample \mathcal{X}

Weak Learning

- ightharpoonup Let ${\mathcal H}$ be the projection on ${\mathcal X}$ of the functions in our VC class
- ▶ Each $h \in \mathcal{H}$ has the form $h : \mathcal{X} \to \{-1, 1\}$

Weak Learning

- \blacktriangleright Let \mathcal{H} be the projection on \mathcal{X} of the functions in our VC class
- ▶ Each $h \in \mathcal{H}$ has the form $h : \mathcal{X} \to \{-1, 1\}$
- \blacktriangleright WL (weak learning) assumption: There exists $\gamma > 0$ such that

$$\forall q \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \quad \mathbb{P}_{X \sim q}(h(X) \neq f(X)) \leq \frac{1}{2} \gamma$$

Weak Learning

- \blacktriangleright Let \mathcal{H} be the projection on \mathcal{X} of the functions in our VC class
- ▶ Each $h \in \mathcal{H}$ has the form $h : \mathcal{X} \to \{-1, 1\}$
- \blacktriangleright WL (weak learning) assumption: There exists $\gamma > 0$ such that

$$\forall q \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \quad \mathbb{P}_{X \sim q}(h(X) \neq f(X)) < \frac{1}{2}$$

▶ Let M be the $|\mathcal{H}| \times |\mathcal{X}|$ boolean matrix of elements $M(h, x) = \mathbb{I}\{h(x) \neq f(x)\}$

- ▶ Let M be the $|\mathcal{H}| \times |\mathcal{X}|$ boolean matrix of elements $M(h, x) = \mathbb{I}\{h(x) \neq f(x)\}$
- \triangleright Rewrite WL assumption using M:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \quad \mathbb{P}_{X \sim \mathbf{q}}(h(X) \neq f(X)) < \frac{1}{2} \quad \Longleftrightarrow \quad \max_{\mathbf{q} \in \Delta_{\mathcal{X}}} \min_{h \in \mathcal{H}} M(h, \mathbf{q}) < \frac{1}{2}$$

- ▶ Let M be the $|\mathcal{H}| \times |\mathcal{X}|$ boolean matrix of elements $M(h, x) = \mathbb{I}\{h(x) \neq f(x)\}$
- ightharpoonup Rewrite WL assumption using M:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \quad \mathbb{P}_{X \sim \mathbf{q}}(h(X) \neq f(X)) < \frac{1}{2} \quad \Longleftrightarrow \quad \max_{\mathbf{q} \in \Delta_{\mathcal{X}}} \min_{h \in \mathcal{H}} M(h, \mathbf{q}) < \frac{1}{2}$$

▶ By the minimax theorem, we know that

$$\max_{\boldsymbol{q} \in \Delta_{\mathcal{X}}} \min_{h \in \mathcal{H}} M(h, \boldsymbol{q}) = \min_{\boldsymbol{p} \in \Delta_{\mathcal{H}}} \max_{x \in \mathcal{X}} M(\boldsymbol{p}, x)$$

- ▶ Let M be the $|\mathcal{H}| \times |\mathcal{X}|$ boolean matrix of elements $M(h, x) = \mathbb{I}\{h(x) \neq f(x)\}$
- ightharpoonup Rewrite WL assumption using M:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \quad \mathbb{P}_{X \sim \mathbf{q}}(h(X) \neq f(X)) < \frac{1}{2} \quad \Longleftrightarrow \quad \max_{\mathbf{q} \in \Delta_{\mathcal{X}}} \min_{h \in \mathcal{H}} M(h, \mathbf{q}) < \frac{1}{2}$$

▶ By the minimax theorem, we know that

$$\max_{\boldsymbol{q} \in \Delta_{\mathcal{X}}} \min_{h \in \mathcal{H}} M(h, \boldsymbol{q}) = \min_{\boldsymbol{p} \in \Delta_{\mathcal{H}}} \max_{x \in \mathcal{X}} M(\boldsymbol{p}, x)$$

▶ Therefore there exists a distribution p^* over \mathcal{H} such that

$$\max_{x \in \mathcal{X}} M(\boldsymbol{p}^*, x) < \frac{1}{2} \quad \Longleftrightarrow \quad \mathbb{P}_{H \sim \boldsymbol{p}^*} \big(H(x) \neq f(x) \big) < \frac{1}{2} \quad \text{for all } x \in \mathcal{X}$$

- ▶ Let M be the $|\mathcal{H}| \times |\mathcal{X}|$ boolean matrix of elements $M(h, x) = \mathbb{I}\{h(x) \neq f(x)\}$
- ightharpoonup Rewrite WL assumption using M:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \quad \mathbb{P}_{X \sim \mathbf{q}} \big(h(X) \neq f(X) \big) < \frac{1}{2} \quad \Longleftrightarrow \quad \max_{\mathbf{q} \in \Delta_{\mathcal{X}}} \min_{h \in \mathcal{H}} M(h, \mathbf{q}) < \frac{1}{2}$$

▶ By the minimax theorem, we know that

$$\max_{\boldsymbol{q} \in \Delta_{\mathcal{X}}} \min_{h \in \mathcal{H}} M(h, \boldsymbol{q}) = \min_{\boldsymbol{p} \in \Delta_{\mathcal{H}}} \max_{x \in \mathcal{X}} M(\boldsymbol{p}, x)$$

▶ Therefore there exists a distribution p^* over \mathcal{H} such that

$$\max_{x \in \mathcal{X}} M(\boldsymbol{p}^*, x) < \frac{1}{2} \quad \Longleftrightarrow \quad \mathbb{P}_{H \sim \boldsymbol{p}^*}\big(H(x) \neq f(x)\big) < \frac{1}{2} \quad \text{for all } x \in \mathcal{X}$$

▶ This p^* explains (f, \mathcal{X}) : for all $x \in \mathcal{X}$

$$\operatorname{sgn}(\mathbb{E}_{p^*}[H(x)]) = f(x)$$

where $sgn(0) = \bot$

 $lackbox{ WL assumption is equivalent to } \operatorname{sgn} \left(\mathbb{E}_{p^*}[H] \right) = f$, existence of a simple explanation for (\mathcal{X}, f)

- $lackbox{WL}$ assumption is equivalent to $\mathrm{sgn} \big(\mathbb{E}_{p^*}[H] \big) = f$, existence of a simple explanation for (\mathcal{X},f)
- \triangleright We can find p^* using LP, but boosting is a very simple and efficient alternative

- $lackbox{ WL assumption is equivalent to } \operatorname{sgn} \left(\mathbb{E}_{p^*}[H] \right) = f$, existence of a simple explanation for (\mathcal{X}, f)
- \triangleright We can find p^* using LP, but boosting is a very simple and efficient alternative
- ▶ WL oracle for $z \in [0,1]$: Given $q \in \Delta_{\mathcal{X}}$ the oracle returns $h \in \mathcal{H}$ such that

$$\mathbb{P}_{X \sim q}(h(X) \neq f(X)) \leq z$$

- ▶ WL assumption is equivalent to $\operatorname{sgn}(\mathbb{E}_{p^*}[H]) = f$, existence of a simple explanation for (\mathcal{X}, f)
- \triangleright We can find p^* using LP, but boosting is a very simple and efficient alternative
- ▶ WL oracle for $z \in [0,1]$: Given $q \in \Delta_{\mathcal{X}}$ the oracle returns $h \in \mathcal{H}$ such that

$$\mathbb{P}_{X \sim q}(h(X) \neq f(X)) \le z$$

Definition

 $z \in [0,1]$ is boostable if we can find p^* such that $\mathrm{sgn}(\mathbb{E}_{p^*}[H]) = f$ using a WL oracle for z

- ▶ WL assumption is equivalent to $\operatorname{sgn}(\mathbb{E}_{p^*}[H]) = f$, existence of a simple explanation for (\mathcal{X}, f)
- \triangleright We can find p^* using LP, but boosting is a very simple and efficient alternative
- ▶ WL oracle for $z \in [0,1]$: Given $q \in \Delta_{\mathcal{X}}$ the oracle returns $h \in \mathcal{H}$ such that

$$\mathbb{P}_{X \sim q}(h(X) \neq f(X)) \le z$$

Definition

 $z \in [0,1]$ is boostable if we can find p^* such that $\mathrm{sgn}(\mathbb{E}_{p^*}[H]) = f$ using a WL oracle for z

We now show how to boost a WL oracle using online learning

Online learning

Recall
$$M(h, x) = \mathbb{I}\{h(x) \neq f(x)\}$$

The online learning protocol

For each round $t \geq 1$:

- 1. The learner chooses $p_t \in \Delta_{\mathcal{H}}$
- 2. The adversary reveals $x_t \in \mathcal{X}$
- 3. The learner suffers loss $M(\mathbf{p}_t, x_t) = \mathbb{P}_{H \sim \mathbf{p}_t}(H(x_t) \neq f(x_t))$

Online learning

Recall
$$M(h,x) = \mathbb{I}\{h(x) \neq f(x)\}$$

The online learning protocol

For each round $t \geq 1$:

- 1. The learner chooses $p_t \in \Delta_{\mathcal{H}}$
- 2. The adversary reveals $x_t \in \mathcal{X}$
- 3. The learner suffers loss $M(\mathbf{p}_t, x_t) = \mathbb{P}_{H \sim \mathbf{p}_t}(H(x_t) \neq f(x_t))$

For all T and for all $x_1, \ldots, x_T \in \mathcal{X}$, if the learner runs the Hedge algorithm, then

$$\frac{1}{T} \sum_{t=1}^{T} M(\boldsymbol{p}_t, x_t) \le \min_{h \in \mathcal{H}} \frac{1}{T} \sum_{t=1}^{T} M(h, x_t) + \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$

Boosting via online learning

We run Hedge over the dual game $M' = \mathbf{1}\mathbf{1}^{ op} - M^{ op}$ against a WL oracle for z as adversary

Boosting algorithm

For each round $t \geq 1$:

1. Hedge chooses $p_t \in \Delta_{\mathcal{X}}$

- (Hedge learns distributions over \mathcal{X})
- 2. The WL oracle returns $h_t \in \mathcal{H}$ satisfying $M(h_t, \mathbf{p}_t) < z$
- 3. Hedge gets loss $M'(\boldsymbol{p}_t, h_t) = 1 M(h_t, \boldsymbol{p}_t)$

▶ The WL oracle for z satisfies $M'(p_t, h_t) = 1 - M(h_t, p_t) \ge 1 - z$ t = 1, 2, ...

- ▶ The WL oracle for z satisfies $M'(p_t, h_t) = 1 M(h_t, p_t) \ge 1 z$ t = 1, 2, ...
- ► Therefore, by the properties of Hedge

$$1 - z \le \frac{1}{T} \sum_{t=1}^{T} M'(\boldsymbol{p}_t, h_t) \le \min_{x \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^{T} M'(x, h_t) + \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$

- ▶ The WL oracle for z satisfies $M'(\boldsymbol{p}_t, h_t) = 1 M(h_t, \boldsymbol{p}_t) \ge 1 z$ t = 1, 2, ...
- ▶ Therefore, by the properties of Hedge

$$1 - z \le \frac{1}{T} \sum_{t=1}^{T} M'(\boldsymbol{p}_t, h_t) \le \min_{x \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^{T} M'(x, h_t) + \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$

▶ Hence, if $z < \frac{1}{2}$ and T is large enough,

$$\min_{x \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^{T} M'(x, h_t) > \frac{1}{2}$$

- ▶ The WL oracle for z satisfies $M'(\boldsymbol{p}_t, h_t) = 1 M(h_t, \boldsymbol{p}_t) \ge 1 z$ t = 1, 2, ...
- ► Therefore, by the properties of Hedge

$$1 - z \le \frac{1}{T} \sum_{t=1}^{T} M'(\boldsymbol{p}_t, h_t) \le \min_{x \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^{T} M'(x, h_t) + \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$

▶ Hence, if $z < \frac{1}{2}$ and T is large enough,

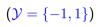
$$\min_{x \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^{T} M'(x, h_t) > \frac{1}{2}$$

ightharpoonup So, $h_t(x) = f(x)$ for more than half of the h_t on each $x \in \mathcal{X}$, which implies

$$\operatorname{sgn}\left(\frac{1}{T}\sum_{t=1}^{T}h_{t}\right) = f$$

▶ Game matrix $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ for binary classification

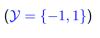
- ▶ Game matrix $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ for binary classification



- ▶ Game matrix $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ for binary classification

Theorem (Boosting Theorem)

Any z < V(B) is boostable



- ▶ Game matrix $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ for binary classification

Theorem (Boosting Theorem)

Any z < V(B) is boostable

$$V(B) = \max_{\boldsymbol{v} \in \Delta_{\mathcal{V}}} \min_{\boldsymbol{u} \in \Delta_{\mathcal{V}}} B(\boldsymbol{u}, \boldsymbol{v})$$

is the smallest error attainable with a biased coin u against the worst-possible distribution v

- ▶ Game matrix $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ for binary classification

Theorem (Boosting Theorem)

Any z < V(B) is boostable

$$V(B) = \max_{\boldsymbol{v} \in \Delta_{\mathcal{Y}}} \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} B(\boldsymbol{u}, \boldsymbol{v})$$

is the smallest error attainable with a biased coin $oldsymbol{u}$ against the worst-possible distribution $oldsymbol{v}$

Any $z \in [0, 1]$ is either boostable or coin attainable

▶ Game matrix $C = \begin{pmatrix} 0 & c^+ \\ c^- & 0 \end{pmatrix}$ for cost-sensitive classification where $0 < c^+, c^- \le 1$ are costs for false positive and false negative mistakes

- ▶ Game matrix $C = \begin{pmatrix} 0 & c^+ \\ c^- & 0 \end{pmatrix}$ for cost-sensitive classification where $0 < c^+, c^- \le 1$ are costs for false positive and false negative mistakes
- $\qquad \min_{\pmb{u} \in \Delta_{\mathcal{Y}}} \max_{\pmb{v} \in \Delta_{\mathcal{Y}}} C(\pmb{u}, \pmb{v}) = \frac{c^-c^+}{c^- + c^+} = V(C) \text{ is the value of game } C$

- ▶ Game matrix $C = \begin{pmatrix} 0 & c^+ \\ c^- & 0 \end{pmatrix}$ for cost-sensitive classification where $0 < c^+, c^- \le 1$ are costs for false positive and false negative mistakes
- $\qquad \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} \max_{\boldsymbol{v} \in \Delta_{\mathcal{Y}}} C(\boldsymbol{u}, \boldsymbol{v}) = \frac{c^-c^+}{c^- + c^+} = V(C) \text{ is the value of game } C$
- \blacktriangleright ($\mathcal{H} \times \mathcal{X}$)-matrix:

$$M_C(h,x) = c^+ \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{false positive}} + c^- \underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{false negative}}$$

- ▶ Game matrix $C = \begin{pmatrix} 0 & c^+ \\ c^- & 0 \end{pmatrix}$ for cost-sensitive classification where $0 < c^+, c^- \le 1$ are costs for false positive and false negative mistakes
- \blacktriangleright ($\mathcal{H} \times \mathcal{X}$)-matrix:

$$M_C(h,x) = \mathbf{c}^+ \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{false positive}} + \mathbf{c}^- \underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{false negative}}$$

► WL oracle for z:

$$\max_{\boldsymbol{q}\in\Delta_{\mathcal{X}}}\min_{h\in\mathcal{H}}M_{C}(h,\boldsymbol{q})\leq z$$

- ▶ Game matrix $C = \begin{pmatrix} 0 & c^+ \\ c^- & 0 \end{pmatrix}$ for cost-sensitive classification where $0 < c^+, c^- \le 1$ are costs for false positive and false negative mistakes
- \blacktriangleright ($\mathcal{H} \times \mathcal{X}$)-matrix:

$$M_C(h,x) = c^+ \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{false positive}} + c^- \underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{false negative}}$$

- $\qquad \qquad \mathbf{WL} \text{ oracle for } z\text{:} \qquad \max_{\boldsymbol{q} \in \Delta_{\mathcal{X}}} \min_{\boldsymbol{h} \in \mathcal{H}} M_C(\boldsymbol{h}, \boldsymbol{q}) \leq z$
- ▶ Which values of z are boostable?

Cost-sensitive binary classification

- ▶ Game matrix $C = \begin{pmatrix} 0 & c^+ \\ c^- & 0 \end{pmatrix}$ for cost-sensitive classification where $0 < c^+, c^- \le 1$ are costs for false positive and false negative mistakes
- $\qquad \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} \max_{\boldsymbol{v} \in \Delta_{\mathcal{Y}}} C(\boldsymbol{u}, \boldsymbol{v}) = \frac{c^-c^+}{c^- + c^+} = V(C) \text{ is the value of game } C$
- $ightharpoonup (\mathcal{H} \times \mathcal{X})$ -matrix:

$$M_C(h,x) = \mathbf{c}^+ \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{false positive}} + \mathbf{c}^- \underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{false negative}}$$

- ▶ WL oracle for z: $\max_{q \in \Delta_{\mathcal{X}}} \min_{h \in \mathcal{H}} M_C(h, q) \leq z$
- \triangleright Which values of z are boostable?

Theorem (Cost-sensitive Boosting Theorem)

Any z < V(C) is boostable

(boostable vs. coin attainable dichotomy)

Bayes optimal prediction minimizes the conditional risk:

$$f^*(x) = \underset{\widehat{y} \in \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}[\ell(\widehat{y}, Y) \mid X = x]$$

Bayes optimal prediction minimizes the conditional risk:

$$f^*(x) = \operatorname*{argmin}_{\widehat{y} \in \mathcal{Y}} \mathbb{E} \big[\ell(\widehat{y}, Y) \mid X = x \big]$$

Worst-case conditional Bayes risk:

$$\max_{p(Y|X=x)} \min_{\widehat{y} \in \mathcal{Y}} \mathbb{E}\Big[\ell(\widehat{y}, Y) \mid X = x\Big]$$

Bayes optimal prediction minimizes the conditional risk:

$$f^*(x) = \operatorname*{argmin}_{\widehat{y} \in \mathcal{Y}} \mathbb{E} \big[\ell(\widehat{y}, Y) \mid X = x \big]$$

Worst-case conditional Bayes risk:

$$\max_{p(Y|X=x)} \min_{\widehat{y} \in \mathcal{Y}} \mathbb{E}\Big[\ell(\widehat{y}, Y) \mid X = x\Big]$$

Cost-sensitive binary classification

$$\max_{p(Y|X=x)} \min_{\widehat{y} \in \mathcal{Y}} \mathbb{E}\Big[C(\widehat{y},Y) \mid X=x\Big] = \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} \max_{\boldsymbol{v} \in \Delta_{\mathcal{Y}}} C(\boldsymbol{u},\boldsymbol{v}) = V(C)$$

▶ Bayes optimal prediction minimizes the conditional risk:

$$f^*(x) = \operatorname*{argmin}_{\widehat{y} \in \mathcal{Y}} \mathbb{E} \big[\ell(\widehat{y}, Y) \mid X = x \big]$$

Worst-case conditional Bayes risk:

$$\max_{p(Y|X=x)} \min_{\widehat{y} \in \mathcal{Y}} \mathbb{E}\Big[\ell(\widehat{y}, Y) \mid X = x\Big]$$

Cost-sensitive binary classification

$$\max_{p(Y|X=x)} \min_{\widehat{y} \in \mathcal{Y}} \mathbb{E}\Big[C(\widehat{y}, Y) \mid X = x\Big] = \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} \max_{\boldsymbol{v} \in \Delta_{\mathcal{Y}}} C(\boldsymbol{u}, \boldsymbol{v}) = V(C)$$

► The worst-case conditional Bayes risk for a binary prediction game defines the threshold between boostability and coin attainability

▶ The FP game $W^+ = \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right)$ and the FN game $W^- = \left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right)$

- ▶ The FP game $W^+ = \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right)$ and the FN game $W^- = \left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right)$
- ▶ The associated $(\mathcal{H} \times \mathcal{X})$ -matrices

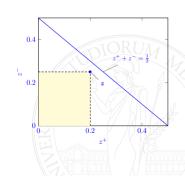
$$M^+(h,x) = \mathbb{I}\{h(x) = 1 \land f(x) = -1\}$$
 $M^-(h,x) = \mathbb{I}\{h(x) = -1 \land f(x) = 1\}$

- ▶ The FP game $W^+ = \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right)$ and the FN game $W^- = \left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right)$
- ▶ The associated $(\mathcal{H} \times \mathcal{X})$ -matrices

$$M^+(h,x) = \mathbb{I}\{h(x) = 1 \land f(x) = -1\}$$
 $M^-(h,x) = \mathbb{I}\{h(x) = -1 \land f(x) = 1\}$

WL oracle for $z = (z^+, z^-)$ (simultaneous guarantees for FP and FN mistakes):

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$



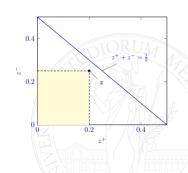
- ▶ The FP game $W^+ = \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right)$ and the FN game $W^- = \left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right)$
- ▶ The associated $(\mathcal{H} \times \mathcal{X})$ -matrices

$$M^+(h,x) = \mathbb{I}\{h(x) = 1 \land f(x) = -1\}$$
 $M^-(h,x) = \mathbb{I}\{h(x) = -1 \land f(x) = 1\}$

WL oracle for $z = (z^+, z^-)$ (simultaneous guarantees for FP and FN mistakes):

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$

▶ Which values of $z = (z^+, z^-)$ are boostable?



▶ Recall WL oracle for $z = (z^+, z^-)$:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$

▶ Recall WL oracle for $z = (z^+, z^-)$:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$

▶ This oracle returns $h: \mathcal{X} \to \mathcal{Y}$ attaining the desired guarantees against a given distribution over \mathcal{X}

▶ Recall WL oracle for $z = (z^+, z^-)$:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$

- ▶ This oracle returns $h: \mathcal{X} \to \mathcal{Y}$ attaining the desired guarantees against a given distribution over \mathcal{X}
- ► Coin-attainable region: guarantees that are attainable with a biased coin

$$\mathcal{K} \equiv \left\{ (z^+, z^-) \, : \, \forall \boldsymbol{v} \in \Delta_{\mathcal{Y}} \quad \exists \boldsymbol{u} \in \Delta_{\mathcal{Y}} \quad W^+(\boldsymbol{u}, \boldsymbol{v}) \leq z^+ \ \land \ W^-(\boldsymbol{u}, \boldsymbol{v}) \leq z^- \right\}$$

▶ Recall WL oracle for $z = (z^+, z^-)$:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$

- ▶ This oracle returns $h: \mathcal{X} \to \mathcal{Y}$ attaining the desired guarantees against a given distribution over \mathcal{X}
- ► Coin-attainable region: guarantees that are attainable with a biased coin

$$\mathcal{K} \equiv \left\{ (z^+, z^-) \, : \, \forall \boldsymbol{v} \in \Delta_{\mathcal{Y}} \quad \exists \boldsymbol{u} \in \Delta_{\mathcal{Y}} \quad W^+(\boldsymbol{u}, \boldsymbol{v}) \leq z^+ \ \land \ W^-(\boldsymbol{u}, \boldsymbol{v}) \leq z^- \right\}$$

► Can an oracle providing guarantees that are attainable with a coin be used for boosting?

▶ Recall WL oracle for $z = (z^+, z^-)$:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$

- ▶ This oracle returns $h: \mathcal{X} \to \mathcal{Y}$ attaining the desired guarantees against a given distribution over \mathcal{X}
- ► Coin-attainable region: guarantees that are attainable with a biased coin

$$\mathcal{K} \equiv \left\{ (z^+, z^-) \, : \, \forall \boldsymbol{v} \in \Delta_{\mathcal{Y}} \quad \exists \boldsymbol{u} \in \Delta_{\mathcal{Y}} \quad W^+(\boldsymbol{u}, \boldsymbol{v}) \leq z^+ \, \wedge \, W^-(\boldsymbol{u}, \boldsymbol{v}) \leq z^- \right\}$$

- ► Can an oracle providing guarantees that are attainable with a coin be used for boosting?
- ightharpoonup Scalar case: any $z \geq V(C)$ is coin attainable by definition and therefore not boostable by the cost-sensitive Boosting theorem

▶ Recall WL oracle for $z = (z^+, z^-)$:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$

- ▶ This oracle returns $h: \mathcal{X} \to \mathcal{Y}$ attaining the desired guarantees against a given distribution over \mathcal{X}
- ► Coin-attainable region: guarantees that are attainable with a biased coin

$$\mathcal{K} \equiv \left\{ (z^+, z^-) \, : \, \forall \boldsymbol{v} \in \Delta_{\mathcal{Y}} \quad \exists \boldsymbol{u} \in \Delta_{\mathcal{Y}} \quad W^+(\boldsymbol{u}, \boldsymbol{v}) \leq z^+ \, \wedge \, W^-(\boldsymbol{u}, \boldsymbol{v}) \leq z^- \right\}$$

- ► Can an oracle providing guarantees that are attainable with a coin be used for boosting?
- Scalar case: any $z \ge V(C)$ is coin attainable by definition and therefore not boostable by the cost-sensitive Boosting theorem

Theorem (Multi-Objective Boosting Theorem)

Any $z \notin \mathcal{K}$ is boostable

▶ Recall WL oracle for $z = (z^+, z^-)$:

$$\forall \mathbf{q} \in \Delta_{\mathcal{X}} \quad \exists h \in \mathcal{H} \qquad M^+(h, \mathbf{q}) < z^+ \land M^-(h, \mathbf{q}) < z^-$$

- ▶ This oracle returns $h: \mathcal{X} \to \mathcal{Y}$ attaining the desired guarantees against a given distribution over \mathcal{X}
- ► Coin-attainable region: guarantees that are attainable with a biased coin

$$\mathcal{K} \equiv \left\{ (z^+, z^-) \, : \, \forall \boldsymbol{v} \in \Delta_{\mathcal{Y}} \quad \exists \boldsymbol{u} \in \Delta_{\mathcal{Y}} \quad W^+(\boldsymbol{u}, \boldsymbol{v}) \leq z^+ \, \wedge \, W^-(\boldsymbol{u}, \boldsymbol{v}) \leq z^- \right\}$$

- ► Can an oracle providing guarantees that are attainable with a coin be used for boosting?
- Scalar case: any $z \geq V(C)$ is coin attainable by definition and therefore not boostable by the cost-sensitive Boosting theorem

Theorem (Multi-Objective Boosting Theorem)

Any $z \notin \mathcal{K}$ is boostable

What is the geometry of K?

For any $0 \le \alpha \le 1$

$$W_{\alpha} = \alpha W^{+} + (1 - \alpha)W^{-} = \begin{pmatrix} 0 & \alpha \\ 1 - \alpha & 0 \end{pmatrix}$$

$$M_{\alpha} = \alpha \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{FP}} + (1 - \alpha)\underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{FN}}$$

For any $0 \le \alpha \le 1$

$$W_{\alpha} = \alpha W^{+} + (1 - \alpha)W^{-} = \begin{pmatrix} 0 & \alpha \\ 1 - \alpha & 0 \end{pmatrix}$$

$$M_{\alpha} = \alpha \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{FP}} + (1 - \alpha)\underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{FN}}$$

lacktriangle This is equivalent to convex costs lpha, 1-lpha for false positive and false negative mistakes

For any $0 \le \alpha \le 1$

$$W_{\alpha} = \alpha W^{+} + (1 - \alpha)W^{-} = \begin{pmatrix} 0 & \alpha \\ 1 - \alpha & 0 \end{pmatrix}$$

$$M_{\alpha} = \alpha \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{FP}} + (1 - \alpha)\underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{FN}}$$

- ightharpoonup This is equivalent to convex costs $\alpha, 1-\alpha$ for false positive and false negative mistakes
- In the scalar case $W_{\alpha} = \begin{pmatrix} 0 & \alpha \\ 1-\alpha & 0 \end{pmatrix}$, any $z \geq V(W_{\alpha})$ is coin attainable

For any $0 \le \alpha \le 1$

$$W_{\alpha} = \alpha W^{+} + (1 - \alpha)W^{-} = \begin{pmatrix} 0 & \alpha \\ 1 - \alpha & 0 \end{pmatrix}$$

$$M_{\alpha} = \alpha \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{FP}} + (1 - \alpha)\underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{FN}}$$

- lacktriangleright This is equivalent to convex costs lpha,1-lpha for false positive and false negative mistakes
- In the scalar case $W_{\alpha} = \begin{pmatrix} 0 & \alpha \\ 1-\alpha & 0 \end{pmatrix}$, any $z \geq V(W_{\alpha})$ is coin attainable

Theorem (Duality)

A multi-objective guarantee z is coin-attainable iff it has no boostable scalarizations:

$$\mathcal{K} \equiv \left\{ \boldsymbol{z} = (z^+, z^-) : \forall \boldsymbol{\alpha} = (\alpha, 1 - \alpha) \mid \langle \boldsymbol{\alpha}, \boldsymbol{z} \rangle \geq V(W_{\boldsymbol{\alpha}}) \right\}$$

For any $0 \le \alpha \le 1$

$$W_{\alpha} = \alpha W^{+} + (1 - \alpha)W^{-} = \begin{pmatrix} 0 & \alpha \\ 1 - \alpha & 0 \end{pmatrix}$$

$$M_{\alpha} = \alpha \underbrace{\mathbb{I}\{h(x) = 1 \land f(x) = -1\}}_{\text{FP}} + (1 - \alpha)\underbrace{\mathbb{I}\{h(x) = -1 \land f(x) = 1\}}_{\text{FN}}$$

- lacktriangleright This is equivalent to convex costs lpha, 1-lpha for false positive and false negative mistakes
- ▶ In the scalar case $W_{\alpha} = \begin{pmatrix} 0 & \alpha \\ 1-\alpha & 0 \end{pmatrix}$, any $z \geq V(W_{\alpha})$ is coin attainable

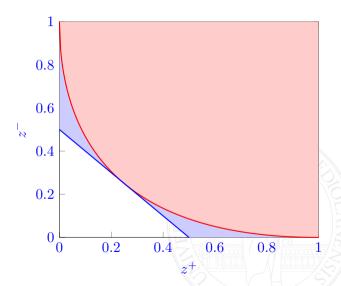
Theorem (Duality)

A multi-objective guarantee z is coin-attainable iff it has no boostable scalarizations:

$$\mathcal{K} \equiv \left\{ \boldsymbol{z} = (z^+, z^-) : \forall \boldsymbol{\alpha} = (\alpha, 1 - \alpha) \quad \langle \boldsymbol{\alpha}, \boldsymbol{z} \rangle \ge V(W_{\boldsymbol{\alpha}}) \right\}$$
$$\equiv \left\{ (z^+, z^-) \in [0, 1]^2 : \sqrt{z^+} + \sqrt{z^-} \ge 1 \right\}$$

Geometry of ${\mathcal K}$

- Red: Coin attainable region
- Blue: Boostable only using oracle with simultaneous guarantees
- ▶ White: Boostable by both oracles



▶ Game matrix D for labels $\{1, \ldots, n\}$ where D(i, j) is cost of predicting i when true label is j

- ▶ Game matrix D for labels $\{1,\ldots,n\}$ where D(i,j) is cost of predicting i when true label is j
- ▶ For any subset $J \subseteq \mathcal{Y}$ of labels: $V_J(D) = \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} \max_{\boldsymbol{v} \in \Delta_J} D(\boldsymbol{u}, \boldsymbol{v})$

- ▶ Game matrix D for labels $\{1,\ldots,n\}$ where D(i,j) is cost of predicting i when true label is j
- ► For any subset $J \subseteq \mathcal{Y}$ of labels: $V_J(D) = \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} \max_{\boldsymbol{v} \in \Delta_J} D(\boldsymbol{u}, \boldsymbol{v})$
- This is the smallest loss one can ensure by predicting with a die knowing that the correct label is in J.

- ▶ Game matrix D for labels $\{1,\ldots,n\}$ where D(i,j) is cost of predicting i when true label is j
- ► For any subset $J \subseteq \mathcal{Y}$ of labels: $V_J(D) = \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} \max_{\boldsymbol{v} \in \Delta_J} D(\boldsymbol{u}, \boldsymbol{v})$
- ► This is the smallest loss one can ensure by predicting with a die knowing that the correct label is in *J*.
- ▶ Boosting is only possible within any two consecutive game values

$$0 = v_1 < v_2 < \dots < v_j < v_{j+1} < \dots < v_N = V_{\mathcal{Y}}(D)$$

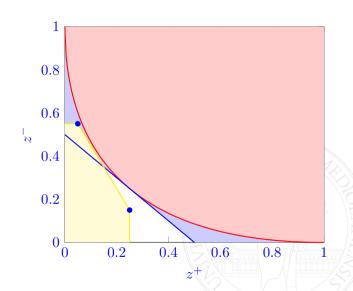
- ▶ Game matrix D for labels $\{1,\ldots,n\}$ where D(i,j) is cost of predicting i when true label is j
- ► For any subset $J \subseteq \mathcal{Y}$ of labels: $V_J(D) = \min_{\boldsymbol{u} \in \Delta_{\mathcal{Y}}} \max_{\boldsymbol{v} \in \Delta_J} D(\boldsymbol{u}, \boldsymbol{v})$
- This is the smallest loss one can ensure by predicting with a die knowing that the correct label is in J.
- ▶ Boosting is only possible within any two consecutive game values

$$0 = v_1 < v_2 < \dots < v_j < v_{j+1} < \dots < v_N = V_{\mathcal{Y}}(D)$$

Extension to multiobjective multiclass

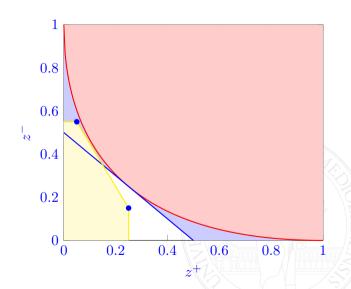
Open problems

 Suppose that the WL oracle provides guarantees in some convex region



Open problems

- Suppose that the WL oracle provides guarantees in some convex region
- Can we boost as long as the oracle region does not intersect the coin attainable region?



Open problems

- Suppose that the WL oracle provides guarantees in some convex region
- Can we boost as long as the oracle region does not intersect the coin attainable region?
- Can we do it adaptively?

