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Nicolò Cesa-Bianchi
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Learning a binary classifier

▶ Finite sample X of datapoints with binary labels f : X → {−1, 1}

▶ We know that simple explanations of (X , f) have good predictive power
▶ Fix a simple (e.g., low VC-dimension) class of {−1, 1}-valued functions
▶ Simple explanations: (convex) combination of functions in the class

whose sign correlates well with f on the sample X
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Weak Learning

▶ Let H be the projection on X of the functions in our VC class
▶ Each h ∈ H has the form h : X → {−1, 1}

▶ WL (weak learning) assumption: There exists γ > 0 such that
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∀ q ∈ ∆X ∃ h ∈ H PX∼q

(
h(X) ̸= f(X)

)
≤ 1

2 − γ
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Connections with minimax

▶ Let M be the |H| × |X | boolean matrix of elements M(h, x) = I{h(x) ̸= f(x)}

▶ Rewrite WL assumption using M :

∀ q ∈ ∆X ∃ h ∈ H PX∼q

(
h(X) ̸= f(X)

)
<

1
2 ⇐⇒ max

q∈∆X
min
h∈H

M(h, q) <
1
2

▶ By the minimax theorem, we know that
max
q∈∆X

min
h∈H

M(h, q) = min
p∈∆H

max
x∈X

M(p, x)

▶ Therefore there exists a distribution p∗ over H such that

max
x∈X

M(p∗, x) <
1
2 ⇐⇒ PH∼p∗

(
H(x) ̸= f(x)

)
<

1
2 for all x ∈ X

▶ This p∗ explains (f, X ): for all x ∈ X sgn
(
Ep∗ [H(x)]

)
= f(x) where sgn(0) = ⊥
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Weak learning and simple explanations

▶ WL assumption is equivalent to sgn
(
Ep∗ [H]

)
= f , existence of a simple explanation for

(X , f)

▶ We can find p∗ using LP, but boosting is a very simple and efficient alternative

▶ WL oracle for z ∈ [0, 1]: Given q ∈ ∆X the oracle returns h ∈ H such that

PX∼q

(
h(X) ̸= f(X)

)
≤ z

Definition
z ∈ [0, 1] is boostable if we can find p∗ such that sgn

(
Ep∗ [H]

)
= f using a WL oracle for z

We now show how to boost a WL oracle using online learning
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Online learning

Recall M(h, x) = I{h(x) ̸= f(x)}

The online learning protocol
For each round t ≥ 1:

1. The learner chooses pt ∈ ∆H

2. The adversary reveals xt ∈ X
3. The learner suffers loss M(pt, xt) = PH∼pt

(
H(xt) ̸= f(xt)

)

For all T and for all x1, . . . , xT ∈ X , if the learner runs the Hedge algorithm, then

1
T

T∑
t=1

M(pt, xt) ≤ min
h∈H

1
T

T∑
t=1

M(h, xt) + O
( 1√

T

)
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Boosting via online learning

We run Hedge over the dual game M ′ = 11⊤ − M⊤ against a WL oracle for z as adversary

Boosting algorithm
For each round t ≥ 1:

1. Hedge chooses pt ∈ ∆X (Hedge learns distributions over X )
2. The WL oracle returns ht ∈ H satisfying M(ht, pt) ≤ z

3. Hedge gets loss M ′(pt, ht) = 1 − M(ht, pt)
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Analysis

▶ The WL oracle for z satisfies M ′(pt, ht) = 1 − M(ht, pt) ≥ 1 − z t = 1, 2, . . .

▶ Therefore, by the properties of Hedge

1 − z ≤ 1
T

T∑
t=1

M ′(pt, ht) ≤ min
x∈X

1
T

T∑
t=1

M ′(x, ht) + O
( 1√

T

)
▶ Hence, if z < 1

2 and T is large enough,

min
x∈X

1
T

T∑
t=1

M ′(x, ht) >
1
2

▶ So, ht(x) = f(x) for more than half of the ht on each x ∈ X , which implies

sgn
(

1
T

T∑
t=1

ht

)
= f
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A game-theoretic view

▶ Game matrix B =
( 0 1

1 0
)

for binary classification

▶
1
2 = min

u∈∆Y
max
v∈∆Y

B(u, v) = V (B) is the value of game B (Y = {−1, 1})

Theorem (Boosting Theorem)
Any z < V (B) is boostable

V (B) = max
v∈∆Y

min
u∈∆Y

B(u, v)

is the smallest error attainable with a biased coin u against the worst-possible distribution v

Any z ∈ [0, 1] is either boostable or coin attainable
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Cost-sensitive binary classification

▶ Game matrix C =
( 0 c+

c− 0
)

for cost-sensitive classification
where 0 < c+, c− ≤ 1 are costs for false positive and false negative mistakes

▶ min
u∈∆Y

max
v∈∆Y

C(u, v) = c−c+

c− + c+ = V (C) is the value of game C

▶ (H × X )-matrix:
MC(h, x) = c+ I{h(x) = 1 ∧ f(x) = −1}︸ ︷︷ ︸

false positive

+c− I{h(x) = −1 ∧ f(x) = 1}︸ ︷︷ ︸
false negative

▶ WL oracle for z: max
q∈∆X

min
h∈H

MC(h, q) ≤ z

▶ Which values of z are boostable?

Theorem (Cost-sensitive Boosting Theorem)
Any z < V (C) is boostable (boostable vs. coin attainable dichotomy)
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Relationship to Bayes optimal prediction

▶ Bayes optimal prediction minimizes the conditional risk:
f∗(x) = argmin

ŷ∈Y
E
[
ℓ(ŷ, Y ) | X = x

]

▶ Worst-case conditional Bayes risk:
max

p(Y |X=x)
min
ŷ∈Y

E
[
ℓ
(
ŷ, Y

)
| X = x

]
▶ Cost-sensitive binary classification

max
p(Y |X=x)

min
ŷ∈Y

E
[
C
(
ŷ, Y

)
| X = x

]
= min

u∈∆Y
max
v∈∆Y

C(u, v) = V (C)

▶ The worst-case conditional Bayes risk for a binary prediction game defines the threshold
between boostability and coin attainability

N. Cesa-Bianchi (UNIMI and POLIMI) Regret, Games and Boosting Regret, Optimization, and Games 11 / 17



Relationship to Bayes optimal prediction

▶ Bayes optimal prediction minimizes the conditional risk:
f∗(x) = argmin
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ŷ∈Y

E
[
ℓ
(
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Simultaneous false positive and false negative guarantees

▶ The FP game W + =
( 0 1

0 0
)

and the FN game W − =
( 0 0

1 0
)

▶ The associated (H × X )-matrices
M+(h, x) = I{h(x) = 1 ∧ f(x) = −1} M−(h, x) = I{h(x) = −1 ∧ f(x) = 1}

▶ WL oracle for z = (z+, z−)
(simultaneous guarantees for FP and FN mistakes):

∀ q ∈ ∆X ∃ h ∈ H M+(h, q) < z+ ∧ M−(h, q) < z−

▶ Which values of z = (z+, z−) are boostable?
0 0.2 0.40

0.2

0.4

z

z+ + z− = 1
2

z+

z
−
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Coin attainable guarantees
▶ Recall WL oracle for z = (z+, z−):

∀ q ∈ ∆X ∃ h ∈ H M+(h, q) < z+ ∧ M−(h, q) < z−

▶ This oracle returns h : X → Y attaining the desired guarantees against a given
distribution over X

▶ Coin-attainable region: guarantees that are attainable with a biased coin
K ≡

{
(z+, z−) : ∀v ∈ ∆Y ∃u ∈ ∆Y W +(u, v) ≤ z+ ∧ W −(u, v) ≤ z−

}
▶ Can an oracle providing guarantees that are attainable with a coin be used for boosting?
▶ Scalar case: any z ≥ V (C) is coin attainable by definition and therefore not boostable by

the cost-sensitive Boosting theorem

Theorem (Multi-Objective Boosting Theorem)
Any z ̸∈ K is boostable
What is the geometry of K?
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Scalarization
For any 0 ≤ α ≤ 1

Wα = αW + + (1 − α)W − =
( 0 α

1−α 0
)

Mα = α I{h(x) = 1 ∧ f(x) = −1}︸ ︷︷ ︸
FP

+(1 − α) I{h(x) = −1 ∧ f(x) = 1}︸ ︷︷ ︸
FN

▶ This is equivalent to convex costs α, 1 − α for false positive and false negative mistakes
▶ In the scalar case Wα =

( 0 α
1−α 0

)
, any z ≥ V (Wα) is coin attainable

Theorem (Duality)
A multi-objective guarantee z is coin-attainable iff it has no boostable scalarizations:

K ≡
{

z = (z+, z−) : ∀α = (α, 1 − α) ⟨α, z⟩ ≥ V (Wα)
}

≡
{

(z+, z−) ∈ [0, 1]2 :
√

z+ +
√

z− ≥ 1
}
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Geometry of K

▶ Red: Coin attainable region
▶ Blue: Boostable only using oracle

with simultaneous guarantees
▶ White: Boostable by both oracles
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Extensions to the multiclass case

▶ Game matrix D for labels {1, . . . , n} where D(i, j) is cost of predicting i when true label
is j

▶ For any subset J ⊆ Y of labels: VJ(D) = min
u∈∆Y

max
v∈∆J

D(u, v)

▶ This is the smallest loss one can ensure by predicting with a die knowing that the correct
label is in J .

▶ Boosting is only possible within any two consecutive game values
0 = v1 < v2 < · · · < vj < vj+1 < · · · < vN = VY(D)

▶ Extension to multiobjective multiclass
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Open problems

▶ Suppose that the WL oracle
provides guarantees in some
convex region

▶ Can we boost as long as the
oracle region does not intersect
the coin attainable region?

▶ Can we do it adaptively?
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