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Learning a binary classifier

» Finite sample X of datapoints with binary labels f : X — {—1,1}
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Learning a binary classifier

» Finite sample X of datapoints with binary labels f : X — {—1,1}
» We know that simple explanations of (X, f) have good predictive power
> Fix a simple (e.g., low VC-dimension) class of {—1, 1}-valued functions

» Simple explanations: (convex) combination of functions in the class
whose sign correlates well with f on the sample X
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Weak Learning

P> Let H be the projection on X of the functions in our VC class
» Each h € H has the form h: X — {—1,1}
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Weak Learning

> Let H be the projection on X of the functions in our VC class
» Each h € H has the form h: X — {—1,1}
» WL (weak learning) assumption: There exists v > 0 such that

Vae Ay FheH Prog(h(X)# f(X) <) 1
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Weak Learning

> Let H be the projection on X of the functions in our VC class
» Each h € H has the form h: X — {—1,1}
» WL (weak learning) assumption: There exists v > 0 such that

Vge Ay FheH Pxog(h(X)+# f(X)) <

N[
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Connections with minimax

» Let M be the |#H| x |X| boolean matrix of elements M (h,x) = I{h(x) # f(x)}
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Connections with minimax

» Let M be the |H| x |X| boolean matrix of elements M (h,z) = I{h(z) # f(x)}
» Rewrite WL assumption using M:

Vge Ay JheH Pxq(h(X)# f(X)) <

!

max min M (h <
qEAy heH (h.q)

N |
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» Let M be the |H| x |X| boolean matrix of elements M (h,z) = I{h(z) # f(x)}
» Rewrite WL assumption using M:

Vge Ay JheH Pxq(h(X)# f(X)) < <= max min M(h,q) <

qeEAy heH

N | —
N —

» By the minimax theorem, we know that

max min M (h = min max M (p,z
qu);hEH (h.q) pEAy et (P, )
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Connections with minimax

» Let M be the |H| x |X| boolean matrix of elements M (h,z) = I{h(z) # f(x)}
» Rewrite WL assumption using M:

Vge Ay JheH Pxq(h(X)# f(X)) <

N |

<= max minM(h,q) <
qeEAy heH

N |

» By the minimax theorem, we know that

max min M (h = min max M (p,z
qu);hEH (h.q) pEAy et (P, )

» Therefore there exists a distribution p* over H such that

r;leagM(p*,x) < % — Ppp-(H(z) # f(z)) <

1
3 forallz e X
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Connections with minimax

» Let M be the |H| x |X| boolean matrix of elements M (h,z) = I{h(z) # f(x)}
» Rewrite WL assumption using M:

1 1
A =0 Px~q(h(X X - in M (h —
VgeAx €H Pxng(h(X) # f(X)) <5 = maxminM(h,q) <
» By the minimax theorem, we know that
in M (h = mi M
max min (h,q) Jnin e (p, )
» Therefore there exists a distribution p* over H such that
1 1
max M (p*,z) < = <= Ppop(H(z)# f(z)) <= forallzeX
TeEX 2 2
» This p* explains (f,X): forallz € X sgn(Ep[H(2)]) = f(x) where sgn(0) = L
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Weak learning and simple explanations

> WL assumption is equivalent to sgn(Ey-[H]) = f, existence of a simple explanation for

(X, )
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Weak learning and simple explanations

> WL assumption is equivalent to sgn(Ey-[H]) = f, existence of a simple explanation for
(X, f)

» We can find p* using LP, but boosting is a very simple and efficient alternative

» WL oracle for z € [0,1]: Given g € Ay the oracle returns h € H such that
Pxnq(h(X) # (X)) < 2

Definition
z €[0,1] is boostable if we can find p* such that sgn(E,~[H]) = f using a WL oracle for z

We now show how to boost a WL oracle using online learning
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Online learning
Recall M (h,x) =1{h(z) # f(z)}

The online learning protocol
For each round ¢t > 1:
1. The learner chooses p, € Ay
2. The adversary reveals x;, € X
3. The learner suffers loss M (p;, x;) = Prp, (H(x:) # f(x1))
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Online learning

Recall M (h,x) =1{h(z) # f(z)}

The online learning protocol
For each round ¢t > 1:

1. The learner chooses p, € Ay
2. The adversary reveals x;, € X

3. The learner suffers loss M (p;, x;) = Prp, (H(x:) # f(x1))

For all T" and for all z1,...,zp € X, if the learner runs the Hedge algorithm, then
d 1 T 1
, Tt) — Y M(h,zt)+ O ()
g pt t T ; ( t) \/T
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Boosting via online learning

We run Hedge over the dual game M’ =117 — M T against a WL oracle for z as adversary

Boosting algorithm
For each round ¢t > 1:

1. Hedge chooses p, € Ay (Hedge learns distributions over X")

2. The WL oracle returns h; € H satisfying M (h:,p,) < z
3. Hedge gets loss M'(p,, ht) =1 — M (ht, p;)
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Analysis

» The WL oracle for z satisfies M'(p;, ht) =1 — M(hy,p) > 1— 2 t=1,2,...
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Analysis

» The WL oracle for z satisfies M'(p;, ht) =1 — M(hy,p) > 1— 2 t=1,2,...
» Therefore, by the properties of Hedge

1 T 1 T 1
_ < — ! < 1 — / P
1—2< T t§:1 M'(p;, ) < gél/{/l T tEﬂ M'(z,h) + O (\/T)
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Analysis

» The WL oracle for z satisfies M'(p;, ht) =1 — M(hy,p) > 1— 2 t=1,2,...

» Therefore, by the properties of Hedge
1 & 1 & 1
1—2< =Y M(p;,h) <min—> M'(z,h O()
e (P, he) < min 75 2 (@ h) + O\ 77

> Hence, if 2z < % and T is large enough,

N. Cesa-Bianchi (UNIMI and POLIMI) Regret, Games and Boosting Regret, Optimization, and Games

8/17



Analysis

» The WL oracle for z satisfies M'(p;, ht) =1 — M(hy,p) > 1— 2 t=1,2,...
» Therefore, by the properties of Hedge

1
1—2< =Y M(p,h <m1n— M'(z,h —I—(’)( )
T; pt t) Z t) \/T

> Hence, if 2z < 5 and T is large enough,

!
mln— E M'(x, hy)
zeXxX T t

l\.’)\r—t

» So, hi(x) = f(x) for more than half of the h; on each = € X', which implies
1 L
N | =
sgn (T; t) f
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A game-theoretic view

» Game matrix B = ({}) for binary classification
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A game-theoretic view

» Game matrix B = ({}) for binary classification

1
> 5= urgiAr; 1{22}; B(u,v) = V(B) is the value of game B Y ={-1,1})

Theorem (Boosting Theorem)
Any z < V(B) is boostable

V(B) = max min B(u,v)
'UEAy ’uEAy

is the smallest error attainable with a biased coin u against the worst-possible distribution v
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A game-theoretic view

» Game matrix B = ({}) for binary classification

1
> 5= urgiAr; 1{22}; B(u,v) = V(B) is the value of game B Y ={-1,1})

Theorem (Boosting Theorem)
Any z < V(B) is boostable

V(B) = max min B(u,v)
'UEAy ’uEAy

is the smallest error attainable with a biased coin u against the worst-possible distribution v

Any z € [0,1] is either boostable or coin attainable
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Cost-sensitive binary classification

> Game matrix C' = (2 CJ) for cost-sensitive classification
where 0 < ¢, ¢~ < 1 are costs for false positive and false negative mistakes
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Cost-sensitive binary classification

> Game matrix C' = ( 0 ) for cost-sensitive classification
where 0 < ¢, ¢~ < 1 are costs for false positive and false negative mistakes
-t
. c ¢
» min max C(u,v) =

uEAy vEAY —xe V(C) is the value of game C'
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Cost-sensitive binary classification
> Game matrix C' = (2 CJ) for cost-sensitive classification
where 0 < ¢, ¢~ < 1 are costs for false positive and false negative mistakes
—ct
» min max C(u,v) = c°
uEAy vEAY ¢ +ct
» (H x X)-matrix:
Mc(h,z) =" I{h(x) =1 A f(z) = -1} +c {h(z) = -1 A f(z) =1}

false positive false negative

= V(C) is the value of game C
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Cost-sensitive binary classification
> Game matrix C' = ( 0 ) for cost-sensitive classification
where 0 < ¢, ¢~ < 1 are costs for false positive and false negative mistakes
—ct
» min max C(u,v) = c°
uEAy vEAY ¢ +ct
» (H x X)-matrix:
Mc(h,z) =" I{h(x) =1 A f(z) = -1} +c {h(z) = -1 A f(z) =1}

false positive false negative

= V(C) is the value of game C

» WL oracle for z:  max min M¢(h,q) < z
qEAX heH
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Cost-sensitive binary classification

> Game matrix C' = ( 0 ) for cost-sensitive classification
where 0 < ¢, ¢~ < 1 are costs for false positive and false negative mistakes
-t
c ¢

» min max C(u,v) = = V(C) is the value of game C

uEAy vEAY ¢ +ct
» (H x X)-matrix:
Mc(h,x) =c" Hh(z) =1 A f(z) = -1} +c Hh(z) = -1 A f(x) =1}

false positive false negative

» WL oracle for z:  max min M¢(h,q) < z
qEAX heH

» Which values of z are boostable?
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Cost-sensitive binary classification
> Game matrix C' = ( 0 ) for cost-sensitive classification
where 0 < ¢, ¢~ < 1 are costs for false positive and false negative mistakes
—ct
» min max C(u,v) = c°
uEAy vEAY ¢ +ct
» (H x X)-matrix:
Mc(h,z) =" I{h(x) =1 A f(z) = -1} +c {h(z) = -1 A f(z) =1}

false positive false negative

= V(C) is the value of game C

» WL oracle for z:  max min M¢(h,q) < z
qEAX heH

» Which values of z are boostable?

Theorem (Cost-sensitive Boosting Theorem)
Any z < V(C) is boostable (boostable vs. coin attainable dichotomy)
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Relationship to Bayes optimal prediction

» Bayes optimal prediction minimizes the conditional risk:

f*(x)—argmlnE[ (7,Y)]| X =x]
yeyY
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Relationship to Bayes optimal prediction

» Bayes optimal prediction minimizes the conditional risk:

f*(z) = argmin E[((7,Y) | X = 7]
yey
> Worst-case conditional Bayes risk:

max minlE X =z
p(Y|X=x) yey [ ( ) | }
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Relationship to Bayes optimal prediction

» Bayes optimal prediction minimizes the conditional risk:
f*(z) = argmin E[((7,Y) | X = 7]
ey
> Worst-case conditional Bayes risk:
max mlnE[ (7,Y) \X—m}
p(Y[X=x) yey
» Cost-sensitive binary classification

max IIHHE[C( V)| X = x} = min max C(u,v) =V(C)
(Y‘X x) ye)f ’LLEAy ’UEAJ}

N. Cesa-Bianchi (UNIMI and POLIMI) Regret, Games and Boosting Regret, Optimization, and Games 11/17



Relationship to Bayes optimal prediction

» Bayes optimal prediction minimizes the conditional risk:
f*(z) = argmin E[((7,Y) | X = 7]
ey
> Worst-case conditional Bayes risk:
max mlnE[ (7,Y) | X —x}
p(Y|X=2) yey
> Cost-sensitive binary classification
max IIHHE{C( V)| X = x} = min max C(u,v) =V(C)
p(Y|X=zx) yey ucAy veEAy,
» The worst-case conditional Bayes risk for a binary prediction game defines the threshold
between boostability and coin attainability
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Simultaneous false positive and false negative guarantees

> The FP game W' = (3 1) and the FN game W~ = ({9)
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Simultaneous false positive and false negative guarantees

» The FP game Wt = (J 1) and the FN game W~ = (99)
» The associated (H x X')-matrices
M*(h,a) =I{h(z) =1 A fz) = —1} M~ (h,a) = I{h(z) = —1 A f(&) = 1}
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Simultaneous false positive and false negative guarantees

» The FP game Wt = (J 1) and the FN game W~ = (
» The associated (H x X')-matrices

M*t(h,z) =1{h(z) =1 A f(z)=-1} M (h,z) ={h(z) = -1 A f(z) =1}

—Oo
[e]e)
SN—

» WL oracle for z = (21, 27) 04}
(simultaneous guarantees for FP and FN mistakes): N s
quAX dheH M+(h )<Z+ A Mﬁ(h,q)<z7 0.2 .

2zt
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Simultaneous false positive and false negative guarantees

» The FP game Wt = (J 1) and the FN game W~ = (
» The associated (H x X')-matrices

M*t(h,z) =1{h(z) =1 A f(z)=-1} M (h,z) ={h(z) = -1 A f(z) =1}

—Oo
[e]e)
SN—

» WL oracle for z = (21, 27) " {
(simultaneous guarantees for FP and FN mistakes): > Q)
VgeAy 3heH MT(hq) <zt AM (hq <z :

» Which values of z = (2%, 27) are boostable?

2zt
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Coin attainable guarantees

» Recall WL oracle for z = (2F,27):
Vge Ay IheH  Mt(hq) <zt AN M (h,q) <z~
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Coin attainable guarantees

» Recall WL oracle for z = (27, 27):
Vge Ay IheH  Mt(hq) <zt AN M (h,q) <z~

» This oracle returns h : X — Y attaining the desired guarantees against a given
distribution over X
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» Recall WL oracle for z = (27, 27):
Vge Ay IheH  Mt(hq) <zt AN M (h,q) <z~

» This oracle returns h : X — Y attaining the desired guarantees against a given
distribution over X

» Coin-attainable region: guarantees that are attainable with a biased coin
K= {(z+,z_) YweEAy JucAy Whlu,v) <zt A W (u,v) < z_}

» Can an oracle providing guarantees that are attainable with a coin be used for boosting?
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Coin attainable guarantees

» Recall WL oracle for z = (27, 27):
Vge Ay IheH  Mt(hq) <zt AN M (h,q) <z~
» This oracle returns h : X — Y attaining the desired guarantees against a given
distribution over X

» Coin-attainable region: guarantees that are attainable with a biased coin
K= {(z+,z_) YweEAy JucAy Whlu,v) <zt A W (u,v) < z_}
» Can an oracle providing guarantees that are attainable with a coin be used for boosting?

» Scalar case: any z > V/(C) is coin attainable by definition and therefore not boostable by
the cost-sensitive Boosting theorem
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Coin attainable guarantees

» Recall WL oracle for z = (27, 27):
Vge Ay IheH  Mt(hq) <zt AN M (h,q) <z~

» This oracle returns h : X — Y attaining the desired guarantees against a given
distribution over X

» Coin-attainable region: guarantees that are attainable with a biased coin
K= {(z+,z_) YweEAy JucAy Whlu,v) <zt A W (u,v) < z_}
» Can an oracle providing guarantees that are attainable with a coin be used for boosting?
» Scalar case: any z > V/(C) is coin attainable by definition and therefore not boostable by
the cost-sensitive Boosting theorem
Theorem (Multi-Objective Boosting Theorem)
Any z & K is boostable
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Coin attainable guarantees

» Recall WL oracle for z = (27, 27):
Vge Ay IheH  Mt(hq) <zt AN M (h,q) <z~

» This oracle returns h : X — Y attaining the desired guarantees against a given
distribution over X

» Coin-attainable region: guarantees that are attainable with a biased coin
K= {(z+,z_) YweEAy JucAy Whlu,v) <zt A W (u,v) < z_}
» Can an oracle providing guarantees that are attainable with a coin be used for boosting?
» Scalar case: any z > V/(C) is coin attainable by definition and therefore not boostable by
the cost-sensitive Boosting theorem
Theorem (Multi-Objective Boosting Theorem)
Any z & K is boostable
What is the geometry of K7
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Scalarization
Forany0<a <1
Wo=aWr+(1—-a)W™ =(,2,8)
My =al{h(x)=1A f(z)=—-1}+(1 —a){h(z) = -1 A f(z) =1}

FP FN

N. Cesa-Bianchi (UNIMI and POLIMI) Regret, Games and Boosting Regret, Optimization, and Games 14 /17



Scalarization
Forany0<a <1
Wo=aWr+(1—-a)W™ =(,2,8)
My =al{h(x)=1A f(z)=—-1}+(1 —a){h(z) = -1 A f(z) =1}

FP FN

» This is equivalent to convex costs o, 1 — « for false positive and false negative mistakes
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Scalarization
Forany0<a <1
Wo=aWr+(1—-a)W™ =(,2,8)
My =al{h(x)=1A f(z)=—-1}+(1 —a){h(z) = -1 A f(z) =1}

FP FN

» This is equivalent to convex costs o, 1 — « for false positive and false negative mistakes
> In the scalar case W, = (1%, %), any 2 > V(W,) is coin attainable

11—«
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Scalarization
Forany0<a <1
Wo=aWr+(1—-a)W™ =(,2,8)
My =al{h(x)=1A f(z)=—-1}+(1 —a){h(z) = -1 A f(z) =1}

FP FN

» This is equivalent to convex costs o, 1 — « for false positive and false negative mistakes
> In the scalar case W, = (1%, %), any 2 > V(W,) is coin attainable

Theorem (Duality)
A multi-objective guarantee z is coin-attainable iff it has no boostable scalarizations:

K={z=("2) Ya=(a,1-a) (az)>V(Wa)}
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Scalarization
Forany0<a <1
Wo=aWr+(1—-a)W™ =(,2,8)
My =al{h(x)=1A f(z)=—-1}+(1 —a){h(z) = -1 A f(z) =1}

FP FN

» This is equivalent to convex costs o, 1 — « for false positive and false negative mistakes
> In the scalar case W, = (1%, %), any 2 > V(W,) is coin attainable

-
Theorem (Duality)
A multi-objective guarantee z is coin-attainable iff it has no boostable scalarizations:

K={z=("2) Ya=(a,1-a) (az)>V(Wa)}
= {(z+,z_) e0,1]2: Vot + vz > 1}
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Geometry of

> Red: Coin attainable region

> Blue: Boostable only using oracle N
with simultaneous guarantees

> White: Boostable by both oracles
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Extensions to the multiclass case

» Game matrix D for labels {1,...,n} where D(i, j) is cost of predicting i when true label
is J
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Extensions to the multiclass case

» Game matrix D for labels {1,...,n} where D(i, j) is cost of predicting i when true label
is J

» For any subset J C Y of labels: V;(D) = min max D(u,v)
’U,GAy ’UEAJ
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Extensions to the multiclass case

» Game matrix D for labels {1,...,n} where D(i, j) is cost of predicting i when true label
is J
» For any subset J C Y of labels: V;(D) = min max D(u,v)
’U,EAy ’UEAJ
P> This is the smallest loss one can ensure by predicting with a die knowing that the correct
label is in J.
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Extensions to the multiclass case

» Game matrix D for labels {1,...,n} where D(i, j) is cost of predicting i when true label
is J

» For any subset J C Y of labels: V;(D) = min max D(u,v)
’U,EAy ’UEAJ

P> This is the smallest loss one can ensure by predicting with a die knowing that the correct
label is in J.

» Boosting is only possible within any two consecutive game values

O=v<v< < 9<v41 <---<ony=Vy(D)

N. Cesa-Bianchi (UNIMI and POLIMI) Regret, Games and Boosting Regret, Optimization, and Games 16 /17



Extensions to the multiclass case

» Game matrix D for labels {1,...,n} where D(i, j) is cost of predicting i when true label
is J
» For any subset J C Y of labels: V;(D) = min max D(u,v)
’U,EAy ’UEAJ

P> This is the smallest loss one can ensure by predicting with a die knowing that the correct
label is in J.

» Boosting is only possible within any two consecutive game values
O=v<v< < 9<v41 <---<ony=Vy(D)

» Extension to multiobjective multiclass
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Open problems

» Suppose that the WL oracle
provides guarantees in some
convex region
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Open problems

» Suppose that the WL oracle
provides guarantees in some
convex region

> Can we boost as long as the
oracle region does not intersect
the coin attainable region?

0 0.2 0.4 0.6 0.8 1

2t
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Open problems

» Suppose that the WL oracle
provides guarantees in some
convex region

> Can we boost as long as the
oracle region does not intersect
the coin attainable region?

» Can we do it adaptively?
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