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EU regulation for AI
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The talk

I A biased introduction to fairness in ML

I An approachability perspective on (adversarial) fair online
learning

I Application: trade-off between group-wise calibration and
demographic parity
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1- A (biased) tour in the Fair-ML zoology
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Different points of view

We can identify (at least) 3 main approaches for improving fairness
in prediction

1. Individual fairness: aims to treat similar people similarly
(individual notions)

2. Causal fairness: tries to identify causes of unfairness in order to
act on them (causal notions)

3. Group fairness: seeks to comply to fairness criteria at the
sub-population level (statistical notions)

3.1 Stochastically defined subgroups;
3.2 Deterministically defined subgroups, but with overlaps (a.k.a

multi-group fairness)
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Learning framework

Notation

I Outcome Y ∈ Y
I Covariate/features X ∈ X
I Sensitive attribute S ∈ S
I Predictor: f : X × S → Y︸ ︷︷ ︸

Awareness

(possibly f : X → Y︸ ︷︷ ︸
Unawareness

)

I Prediction: F = f(X,S) (possibly F = f(X))

I Some distribution on P on (X ,S,Y)

Ex: binary classification with binary sensitive attribute

I Outcome: label Y ∈ {0, 1}
I Sensitive attribute: S ∈ {0, 1}
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Statistical fairness: Demographic parity

Demographic parity

F ⊥⊥ S

(Kamiran and Calders, 2012)

Ex: (binary classification)

P [F = 1|S = 1] ∼= P [F = 1|S = 0]

Demographic parity promotes diversity and can be related to
affirmative action policies.
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Statistical fairness: Equalized Odds

Equalized Odds

F ⊥⊥ S | Y

(Hardt, Price, and Srebro, 2016)

Ex: (binary classification)

P [F = 1|S = 1, Y ] ∼= P [F = 1|S = 0, Y ]

Equalized Odds encodes a notion of Meritocratic fairness.



9/40

Performance fairness: Group-wise calibration

Group-wise calibration

E [Y |S, F ] ∼= F

(Barocas, Hardt, and Narayanan, 2023)

Ex: (binary classification) for a score F ∈ [0, 1]

P [Y = 1|S = 1, F ] ∼= P [Y = 1|S = 0, F ] ∼= F

The prediction are calibrated for each group.
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Performance fairness: Equal group-wise risk

Equal group-wise risk

For a loss function `

E [`(Y, F )|S] ∼= E [`(Y, F )]
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Statistical fairness: many different criteria

A large zoology

Demographic parity F ⊥⊥ S
Equalized odds F ⊥⊥ S|Y
Equal opportunity F ⊥⊥ S|Y ∈ Y+

Predictive parity Y ∈ Y+ ⊥⊥ S | F ∈ Y+

Group-wise calibration E [Y |S, F ] ∼= F

Equal group-wise risk E [`(Y, F )|S] ∼= E [`(Y, F )]

with some incompatible notions!
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The famous COMPAS case

The Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS) is a software which aims to predict recidivism
risk.

ProPublica compared COMPAS predictions across ethinicity groups
in the USA. It exhibits a large violation of the Equalized Odds
criteria.

The COMPAS developers argue yet that COMPAS (almost)
complies with Predictive parity.

Chouldechova (2017) and Kleinberg et al. (2017) show that it is
impossible to comply simultaneously with Equalized Odds and
Predictive parity, unless Y ⊥⊥ S.
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Finding a balance between different notions

Relaxing fairness criteria

I Fairness criteria are imperfect mathematical transposition of
qualitative ideas;

I Evaluations of fairness criteria are subjected to uncertainties;

I Some fairness criteria are incompatible;

I We can seek for a good trade-off between different fairness
criteria and prediction performance.

Instead of asking for an exact compliance to fairness criteria, maybe

I introduce (quantitive) measures of violation of the fairness
criteria

I and seek for limited violation of fairness criteria?
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2- An Approachability Perspective on

Fair Online Learning
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Our goals

I To investigate fairness in adversarial online learning

I To adopt a unified perspective

I To get benchmark algorithms

I To retrieve information on possible trade-offs between different
objectives
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Fair online learning via approachability
Informal description: for t ≥ 1

I A request arrives with attributes (xt, st)

I The Learner observes xt and tries to predict the (adversarial)
outcome yt

I The goal of the Learner is to provide a prediction at which is
both fair and accurate.

Encoding the objectives of the learner

We encode the objectives (no-regret, demographic parity, etc) via

I a payoff function m(at, yt, xt, st)

I and a target set C.

Goal:
1

T

T∑
t=1

m(at, yt, xt, st) −→ C
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Encoding learning and fairness constraints

The payoff function m(a, y, x, s) and the target set C encode the
objectives of the learner (no-regret, Demographic parity, etc).

Example: Demographic Parity (DP)

" As we are in an adversarial online setting, we replace
distributional properties by empirical counterparts.

Aim: to have, for T large,∣∣∣∣∣ 1

γ0T

T∑
t=1

at1st=0 −
1

γ1T

T∑
t=1

at1st=1

∣∣∣∣∣ ≤ δ,
where γs = Q(st = s).

DP payoff function: mDP(a, s) =
(
a
γ0

1s=0,
a
γ1

1s=1

)
DP target set: CDP(δ) =

{
(u, v) ∈ R2 : |u− v| ≤ δ

}
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Encoding learning and fairness constraints

The payoff function m(a, y, x, s) and the target set C encode the
objectives of the learner (no-regret, Demographic parity, etc).

Example: Group Calibration (GrCal)

Aim: to have, for T large,

∑
s∈S

∑
a∈A

∣∣∣∣∣ 1

γsT

T∑
t=1

(a− yt)1at=a1st=s

∣∣∣∣∣ ≤ ε,
where γs = Q(st = s).

GrCal payoff function: mgr-cal(a, y, s) =
(a′−y
γs′

1a=a′ 1s=s′
)
a′∈A
s′∈S

GrCal target set: Cgr-cal(ε) =
{
v ∈ RN |S| : ‖v‖1 ≤ ε

}
similar to (Hart and Mas-Colell, 2000; Mannor and Stoltz, 2010)
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Encoding learning and fairness constraints

The payoff function m(a, y, x, s) and the target set C encode the
objectives of the learner (no-regret, Demographic parity, etc).

Criterion Vector payoff function m Closed convex target set C

Calibration mcal(a, y) =
(
(a′ − y) 1a=a′

)
a′∈A Ccal =

{
v ∈ RN : ‖v‖1 ≤ ε

}
Group-calibration mgr-cal(a, y, s) =

(
mcal(a, y) 1s=s′/γs′

)
s′∈S Cgr-cal =

{
v ∈ RN |S| : ‖v‖1 ≤ ε

}
No-regret mreg(a, y, x, s) =

(
r(a, y, x, s)−r(a′, y, x, s)

)
a′∈A Creg = [0,+∞)N

Group-no-regret mgr-reg(a, y, x, s) =
(
mreg(a, y, x, s) 1s′=s

)
s′∈S Cgr-reg = [0,+∞)N |S|

Demographic parity mDP(a, s) =
(
a
γ0

1s=0,
a
γ1

1s=1

)
CDP =

{
(u, v) ∈ R2 : |u− v| ≤ δ

}
Equalized payoffs meq-pay(a, y, x, s) =

(
r(a,y,x,s′)

γs′
1s=s′

)
s′∈{0,1}

Ceq-pay =
{

(u, v) ∈ R2 : |u−v|≤ε
}

N.B. See other examples in other contexts (Perchet, 2010)
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Encoding learning and fairness constraints

Combining the learning goals


Performance goals

(
mperf, Cperf

)
Fairness goals

(
mfair, Cfair

) =⇒
(

(mperf,mfair), Cperf × Cfair

)
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Online learning setting: formal description

We model our fair online learning problem as a
contextual learning game between the Learner and Nature.

Stochastic attributes (context)

At each time t, the attributes (xt, st) are sampled according to Q,
independently from the past

Nature (un)awareness

Let G denotes Nature (un)awareness mapping

I Nature awareness G(x, s) = (x, s),

I Nature unawareness: G(x, s) = x.
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Online learning setting: formal description
Learning setting

For t = 1, 2, . . .
1. Simultaneously,

I the Learner chooses (pxt )x∈X based on (mτ , xτ , sτ )τ≤t−1

I Nature chooses
(
q
G(x,s)
t

)
(x,s)∈X×S

based on (aτ , yτ , xτ , sτ )τ≤t−1

2. (xt, st) are sampled according to Q, independently from the past
3. Simultaneously

I the Learner observes xt, and picks an action at ∈ A according to
pxt
t

I Nature observes G(xt, st), and picks yt ∈ Y according to q
G(xt,st)
t

4. The Learner observes the payoff mt = m(at, yt, xt, st) and st,
while Nature observes (at, yt, xt, st).

Aim: The Learner wants to ensure that
1

T

T∑
t=1

mt → C a.s. for some

target set C.
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3- Blackwell Approachability: a reminder
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Blackwell approachability : the setup
Setup

1. For the Player: finite set of actions A
2. For the Nature: finite set of actions B
3. A vector-valued pay-off function m : A× B → Rd
4. A target set C ⊂ Rd

Game

For t = 1, 2, . . .

1. Player and Nature simultaneously pick pt ∈ P(A) and
qt ∈ P(B)

2. (at, bt) ∈ A× B is sampled according to pt ⊗ qt
3. Player observes the payoff mt := m(at, bt); Nature observes

(at, bt)

Goal of the Player: m̄T :=
1

T

T∑
t=1

mt −→ C a.s.
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Blackwell’s result
Approachable set

The target set C is m-approachable if the Player manages to achieve
the above for any strategy of the Nature

Average payoff

m(p,q) :=
∑
a∈A

∑
b∈B

p(a)q(b)m(a, b), for p ∈ P(A), q ∈ P(B).

Blackwell condition

If C ⊂ Rd is closed convex, then C is m-approachable iff

∀q ∈ P(B), ∃p ∈ P(A) s.t. m(p,q) ∈ C

(Blackwell, 1956)
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Proof of Blackwell approachability 1/3
Blackwell’s algorithm

Set m̄T =
1

T

T∑
t=1

mt. At stage t+ 1, choose

pt+1 ∈ argmin
p∈P(A)

max
q∈P(B)

〈m̄t −ΠCm̄t,m(p,q)〉 (1)

L2 convergence: proof sketch
Expanding the squares with m̄t+1 = t

t+1m̄t + 1
t+1mt+1

d(m̄t+1, C)2 ≤ ‖m̄t+1 −ΠCm̄t‖2

=

(
t

t+ 1

)2

‖m̄t −ΠCm̄t‖2︸ ︷︷ ︸
=d(m̄t,C)2

+
‖mt+1 −ΠCm̄t‖2

(t+ 1)2

+
2t

(t+ 1)2
〈m̄t −ΠCm̄t,mt+1 −ΠCm̄t〉︸ ︷︷ ︸

=:Ct+1
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Proof of Blackwell approachability 2/3

According to min-max theorem for bilinear functions, Blackwell condition
and the convexity of C

Ct+1 = 〈m̄t −ΠCm̄t,mt+1 −ΠCm̄t〉
≤ 〈m̄t −ΠCm̄t,mt+1 −m(pt+1,qt+1)〉︸ ︷︷ ︸

=Zt+1

+ max
q
〈m̄t −ΠCm̄t,m(pt+1,q)−ΠCm̄t〉︸ ︷︷ ︸

=maxq minp〈m̄t−ΠCm̄t,m(p,q)−ΠCm̄t〉≤0

The term Zt+1 is a martingale increment, i.e. E[Zt+1|Ht] = 0, so

E
[
d(m̄t+1, C)2

]
≤
(

t

t+ 1

)2

E
[
d(m̄t, C)2

]
+

K

(t+ 1)2
.

Hence, √
E [d(m̄T , C)2] ≤

√
K

T
.
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4- Contextual Blackwell Approachability
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Reminder: approachability for our online
learning setting

Contextual approachability problem

For t = 1, 2, . . .

1. Simultaneously,

I Nature chooses
(
q
G(x,s)
t

)
(x,s)∈X×S

based on (aτ , yτ , xτ , sτ )τ≤t−1

I the Learner chooses (pxt )x∈X based on (mτ , xτ , sτ )τ≤t−1

2. (xt, st) are sampled according to Q, independent from the past
3. Simultaneously

I Nature observes G(xt, st), and picks yt ∈ Y according to qG(xt,st)

I the Learner observes xt, and picks an action at ∈ A according to
pxt

4. The Learner observes the payoff mt = m(at, yt, xt, st) and st,
while Nature observes (at, yt, xt, st).

Aim: The Learner wants to ensure that m̄T :=
1

T

T∑
t=1

mt → C a.s.
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Contextual Blackwell approachability
Assumption: fast enough sequential estimation of Q

The Player can build estimators (Q̂t)t≥1 of the unknown distribution
Q such that

E
[
TV2(Q̂t,Q)

]
= O

((
log t

)−3
)

as t→∞ (2)

Theorem

If C ⊂ Rd is closed convex, m is bounded, and assumption (2) is
satisfied, then
C is m-approachable iff ∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X such that∫

X×S
m
(
px,qG(x,s), x, s

)
dQ(x, s) ∈ C
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Proof of contextual Blackwell approachability
1/3

Contextual Blackwell algorithm

Set m(p,q, Q̂t) :=
∫

m
(
px,qG(x,s), x, s

)
dQ̂t(x, s). At stage t+ 1,

choose

(pxt+1)x∈X ∈ argmin
(px)x

max
(qG(x,s))x,s

〈m̄t −ΠCm̄t,m(p,q, Q̂t)〉

As for classical Blackwell proof

‖m̄t+1 −ΠCm̄t‖2 ≤
(

t

t+ 1

)2

‖m̄t −ΠCm̄t‖2 +
K

(t+ 1)2

+
2t

(t+ 1)2
〈m̄t −ΠCm̄t,mt+1 −m(pt+1,qt+1, Q̂t)〉

+
2t

(t+ 1)2
max
q
〈m̄t −ΠCm̄t,m(pt+1,q, Q̂t)−ΠCm̄t〉︸ ︷︷ ︸

=maxq minp〈m̄t−ΠCm̄t,m(p,q,Q̂t)−ΠCm̄t〉

If Q instead of Q̂t, we could directly conclude as in the original proof.
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Proof of contextual Blackwell approachability
2/3

We have yet∣∣〈m̄t −ΠCm̄t,m(p,q, Q̂t)−m(p,q,Q)〉
∣∣ ≤ 2d(m̄t, C) ‖m‖∞ TV(Q̂t,Q).

Hence, with the same arguments as in the original proof, we get

E
[
d(m̄t+1, C)2

]
≤
(

t

t+ 1

)2

E
[
d(m̄t, C)2

]
+

K

(t+ 1)2

+
8t‖m‖∞
(t+ 1)2

√
E [d(m̄t, C)2]

√
E
[
TV(Q̂t,Q)

]2
.

Hence, by induction,

√
E [d(m̄T , C)2] ≤

√
K

T
+

4‖m‖∞
T

T−1∑
t=1

√
E
[
TV(Q̂t,Q)

]2
.



33/40

3- Application: Optimal Trade-off between

Demographic Parity and Group-Calibration
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Deriving optimal trade-offs from Blackwell
condition

Why is it useful?

I Blackwell condition allows to investigate optimal trade-offs
between learning and fairness objectives.

I Blackwell strategy provides an algorithm for achieving this
optimal trade-off.

Contextual Blackwell condition

If C ⊂ Rd is a closed convex, m is bounded, and assumption (2) is
satisfied, then
C is m-approachable iff ∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X such that∫

X×S
m
(
px,qG(x,s), x, s

)
dQ(x, s) ∈ C
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Objectives

Demographic Parity (DP) and Group Cal (GrCal)

Learning objective: in the learning problem with S = {0, 1} and
Y = [0, 1], we want to have,

lim sup
T→∞

∣∣∣∣∣ 1

γ0T

T∑
t=1

at1st=0 −
1

γ1T

T∑
t=1

at1st=1

∣∣∣∣∣ ≤ δ,
and

lim sup
T→∞

∑
s∈S

∑
a∈A

∣∣∣∣∣ 1

γsT

T∑
t=1

(a− yt)1at=a1st=s

∣∣∣∣∣ ≤ ε,
where γs = Q(st = s).

Question: What values of (ε, δ) are achievable?
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Blackwell approachability condition
Blackwell condition

Approchable iff ∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X such that∥∥∥∥∫
X×S

mgr-cal

(
px,qG(x,s), x, s

)
dQ(x, s)

∥∥∥∥
1

≤ ε

∆

(∫
X×S

mDP

(
px,qG(x,s), x, s

)
dQ(x, s)

)
≤ δ

with ∆(u1, u2) = |u1 − u2|.

Maximal DP violation

We always have ∆(. . .) ≤ TV(Q0,Q1), where Qs = Q(·|st = s). So,
we can restrict to

δτ = τ · TV(Q0,Q1), with τ ∈ [0, 1].
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Pareto frontier
Pareto frontier

We identify ε∗(τ), the smallest ε such that C(ε, δτ ) is approachable.

Nature awareness G(x, s) = (x, s)

ε∗(τ) = 1− τ · TV(Q0,Q1)

Nature unawareness G(x, s) = x

ε∗(τ) = (1− τ) TV(Q0,Q1)

N.B. Optimal trade-offs (and hence C) are not known beforehand!
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Comments
Nature awareness

I Perfect group-calibration (ε = 0) is never possible, unless
TV(Q0,Q1) = 1 (and τ = 1 is picked, i.e. no DP constraint).

I It corresponds to the case where the supports of Q0 and Q1 are
disjoint, hence allowing the Player to infer the sensitive context
s from the non-sensitive one x.

Nature unawareness

I Perfect group-calibration is always possible by setting τ = 1, no
matter the value of TV(Q0,Q1).

I If TV(Q0,Q1) = 0, i.e., xt ⊥⊥ st, then the Player is able to
achieve perfect Group-calibration and demographic parity
simultaneously.
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An important extension

Limitation: the target set C has to be known

Case of unknown target set

The results can be extended (at the price of some technicalities) to
the case where we only have a consistent super-estimate Ĉt of C.

Strategy unknown target set

The strategy is to work by phases, applying the Blackwell algorithm
with C replaced by Ĉ2r for 2r ≤ t ≤ 2r+1 − 1.

" Some stats and probabilistic bounds are hidden there!
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Thank you !

Take home message

I Adversarial fair online learning can be cast as an
approachability problem

I Blackwell approachability theory can be adapted to a
contextual setting with unknown approachability sets

I It provides (benchmark) algorithms

I It allows for a systematic investigation of the trade-offs between
learning / fairness constraints (or some other constraints
objectives?)
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Some supplemental material
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Examples of biased AI

Twitter cropping

Twitter automatically crops large images in order to fit the size of
an average mobile screen.

Original Cropped
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Examples of biased AI

Question:

How will Twitter crop these two images?
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Examples of biased AI

The two outomes

−→ ←−
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Examples of biased AI

With more famous people?
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Examples of biased AI
Automatic translation reproduces gender stereotypes
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Nature awareness

Nature awareness G(x, s) = (x, s)

ε∗(τ) = 1− τ · TV(Q0,Q1)

Worse Nature strategy: Set q(x,0) = δ1 and q(x,1) = δ0.

Gr-Cal =
∑
a∈A

∣∣∣ ∫
X

px(a)(a− 1) dQ0(x)
∣∣∣+

∑
a∈A

∣∣∣ ∫
X

px(a)a dQ1(x)
∣∣∣

=

∫
X

∑
a∈A

px(a) dQ0(x) +

∫
X

∑
a∈A

px(a)a (dQ1(x)− dQ0(x))︸ ︷︷ ︸
absolute value equals DP

≥ 1−DP

Pareto p-strategy: with probability 1− τ play a = 1/2, with
probability τ play a = q(x,0)(1)1Q0(x)>Q1(x) + q(x,1)(1)1Q1(x)≥Q0(x)
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Nature unawareness: lower bound

Nature awareness G(x, s) = x

ε∗(τ) ≥ (1− τ) · TV(Q0,Q1)

Worst Nature strategy:
Set qx = δ1 if “Q1(x) ≥ Q0(x)” and qx = δ0 else.

Pareto p-strategy: with probability 1− τ play

a =

∫
u∈X

qu(1)
dQ0(u) + dQ1(u)

2

with probability τ play a = qx(1)
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