"Calibeating": Beating Forecasters at Their Own Game

Sergiu Hart

October 2025

"Calibeating": Beating Forecasters at Their Own Game

Sergiu Hart

Center for the Study of Rationality
Dept of Mathematics Dept of Economics
The Hebrew University of Jerusalem

```
hart@huji.ac.il
http://www.ma.huji.ac.il/hart
```

Joint work with

Dean P. Foster

University of Pennsylvania & Amazon Research NY

Sergiu Hart "Calibration: The Minimax Proof", 1995 [2021]

www.ma.huji.ac.il/hart/publ.html#calib-minmax

Sergiu Hart "Calibration: The Minimax Proof", 1995 [2021]

www.ma.huji.ac.il/hart/publ.html#calib-minmax

Dean P. Foster and Sergiu Hart "Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics" Games and Economic Behavior 2018

www.ma.huji.ac.il/hart/publ.html#calib-eq

Dean P. Foster and Sergiu Hart "Forecast Hedging and Calibration" Journal of Political Economy 2021

www.ma.huji.ac.il/hart/publ.html#calib-int

Dean P. Foster and Sergiu Hart "Forecast Hedging and Calibration" Journal of Political Economy 2021

```
www.ma.huji.ac.il/hart/publ.html#calib-int
```

Dean P. Foster and Sergiu Hart "'Calibeating': Beating Forecasters at Their Own Game" Theoretical Economics 2023

```
www.ma.huji.ac.il/hart/publ.html#calib-beat
```

Forecaster says: "The probability of rain tomorrow is p"

- Forecaster says: "The probability of rain tomorrow is p"
- Forecaster is CALIBRATED if

- Forecaster says: "The probability of rain tomorrow is p"
- Forecaster is CALIBRATED if
 - for every forecast p: in the days when the forecast was p, the proportion of rainy days equals p

- Forecaster says: "The probability of rain tomorrow is p"
- Forecaster is CALIBRATED if
 - for every forecast p: in the days when the forecast was p, the proportion of rainy days equals p(or: is close to p in the long run)

CALIBRATION can be guaranteed

CALIBRATION can be guaranteed

(no matter what the weather will be)

Foster and Vohra 1994 [publ 1998]

CALIBRATION can be guaranteed

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem

CALIBRATION can be guaranteed

- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem

CALIBRATION can be guaranteed

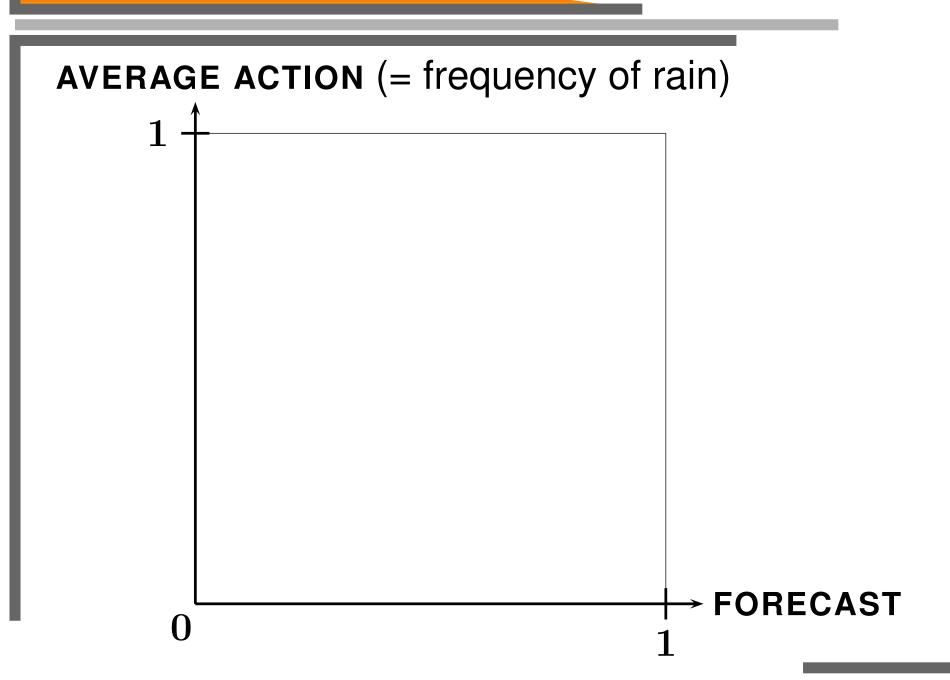
- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem
- **.** . . .
- Hart and Mas-Colell 1996 [publ 2000]: procedure by Blackwell's Approachability

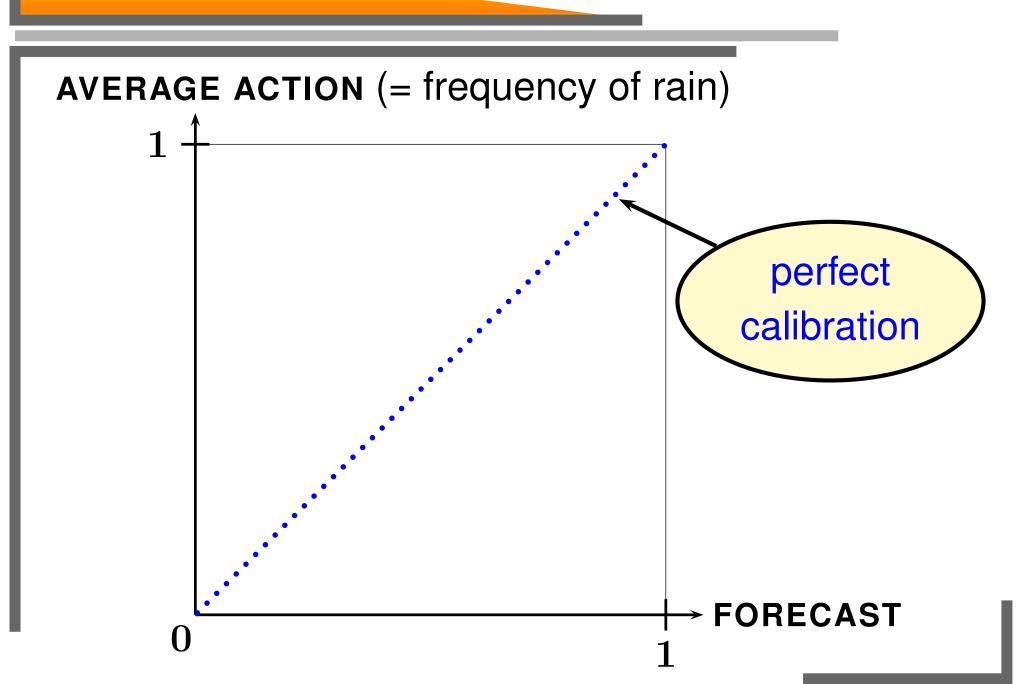
CALIBRATION can be guaranteed

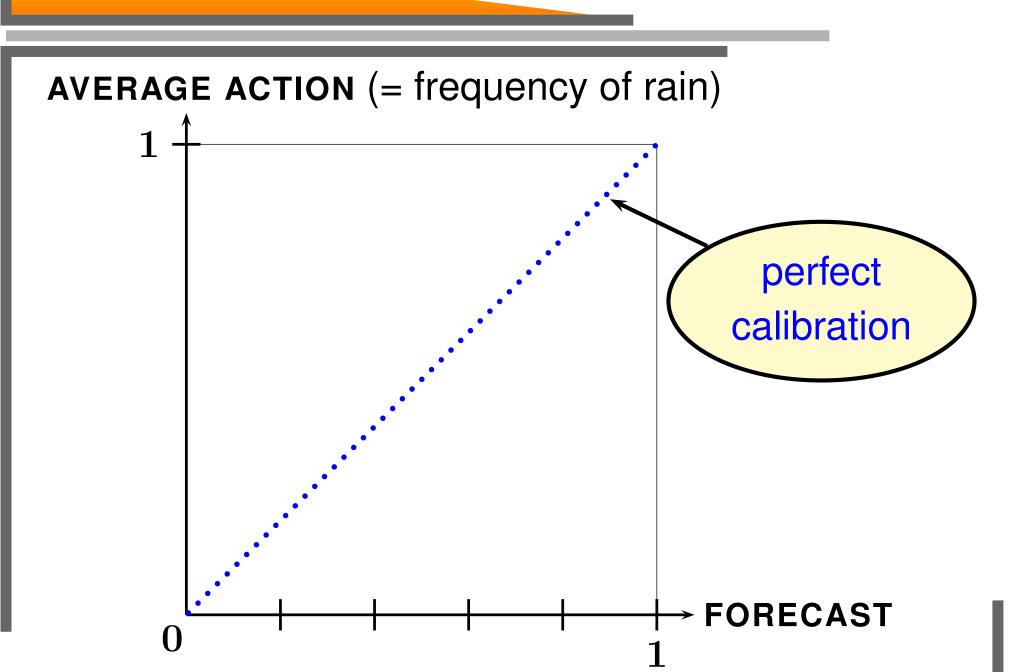
- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem
- **_**
- Hart and Mas-Colell 1996 [publ 2000]: procedure by Blackwell's Approachability
- Foster 1999: simple procedure

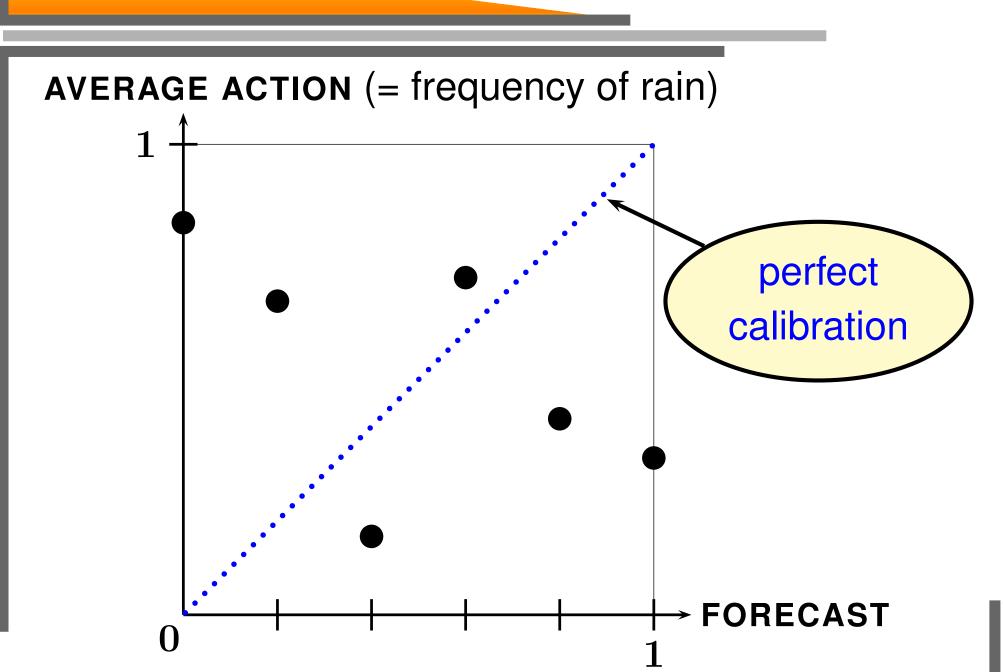
CALIBRATION can be guaranteed

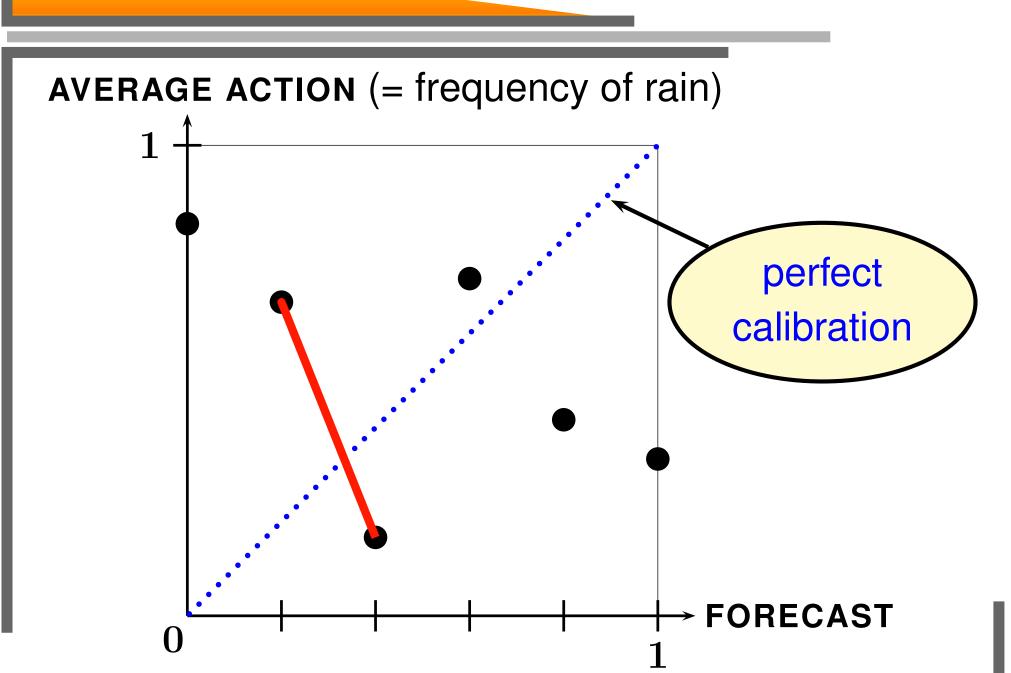
- Foster and Vohra 1994 [publ 1998]
- Hart 1995: proof by Minimax Theorem
- Hart and Mas-Colell 1996 [publ 2000]: procedure by Blackwell's Approachability
- Foster 1999: simple procedure
- Foster and Hart 2016 [publ 2021]: simplest procedure, by "Forecast Hedging"

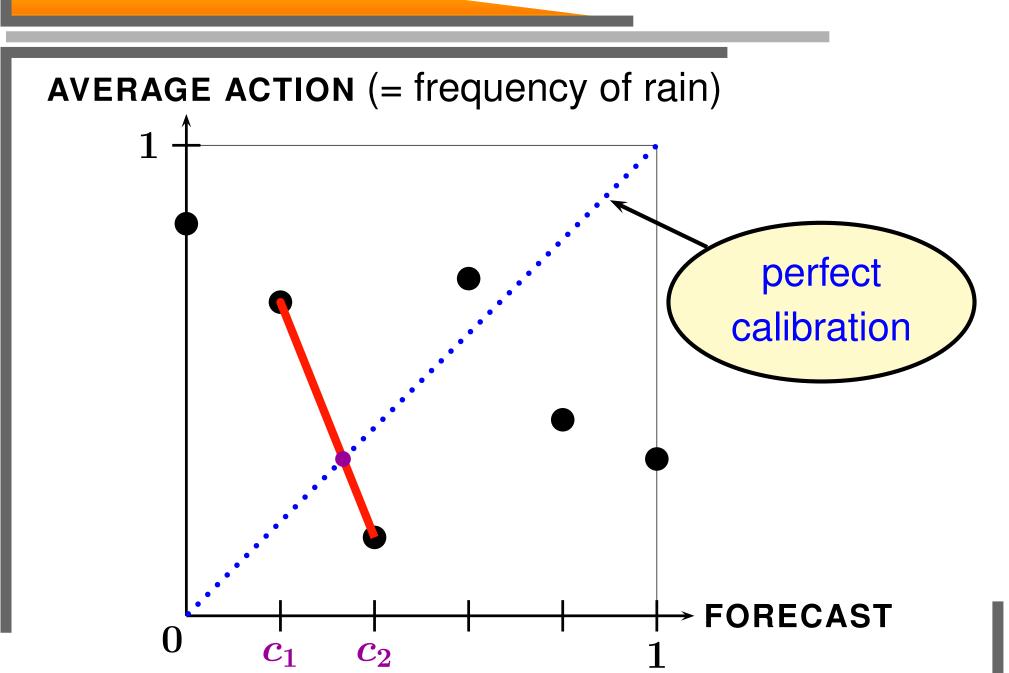






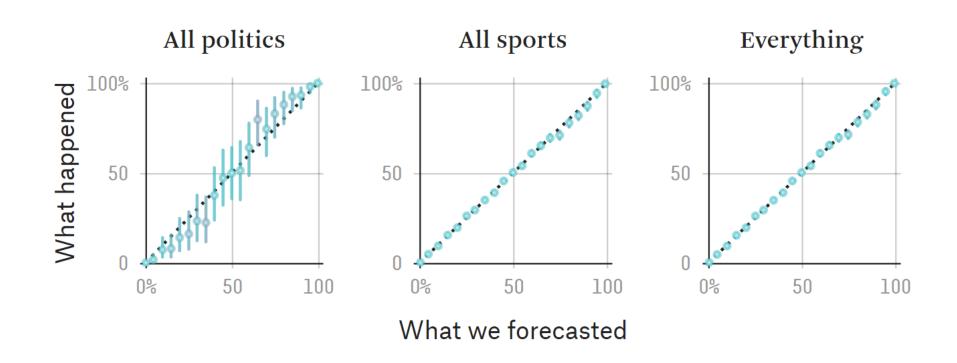






Calibration in Practice

Calibration in Practice



Calibration plots of FiveThirtyEight.com (as of June 2019)

Calibration in Practice

Prediction buckets

Calibration plot of ElectionBettingOdds.com (2016 – 2018)

time	1	2	3	$oxed{4}$	5	6	
------	---	---	---	-----------	---	---	--

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	,

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: CALIBRATION = 0

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: CALIBRATION = 0

F2: CALIBRATION = 0

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: CALIBRATION = 0 IN-BIN VARIANCE = 0

F2: CALIBRATION = 0

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: CALIBRATION = 0 IN-BIN VARIANCE = 0

F2: CALIBRATION = 0 IN-BIN VARIANCE = $\frac{1}{4}$

• $a_t = action at time t$

- $m{a}_t = ext{action at time } t$
- c_t = forecast at time t

- $m{a}_t = ext{action at time } t$
- c_t = forecast at time t
- $ar{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all}$ periods where the forecast was x

- $m{a}_t = ext{action at time } t$
- c_t = forecast at time t
- $ar{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all}$ periods where the forecast was x

$$ar{a}(x) = rac{\sum_{t=1}^T \mathbf{1}_x(oldsymbol{c}_t)\,a_t}{\sum_{t=1}^T \mathbf{1}_x(oldsymbol{c}_t)}$$

- $m{a}_t = ext{action at time } t$
- c_t = forecast at time t
- $ar{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all}$ periods where the forecast was x

- $m{a}_t = ext{action at time } t$
- $m{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all}$ periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$

- $m{a}_t = ext{action at time } t$
- c_t = forecast at time t
- $m{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all}$ periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$

$$\mathcal{K} = rac{1}{T} \sum_{t=1}^T \| oldsymbol{c}_t - ar{a}(oldsymbol{c}_t) \|^2$$

- $m{a}_t = ext{action at time } t$
- $m{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all}$ periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$

- $m{a}_t = ext{action at time } t$
- $ar{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all periods where the forecast was } x$
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$
- $\mathcal{R} \equiv \mathcal{R}_T = \mathsf{REFINEMENT}$ score = average variance inside the bins

- $m{a}_t = ext{action at time } t$
- $ar{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all periods where the forecast was } x$
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$
- $\mathcal{R} \equiv \mathcal{R}_T = \mathsf{REFINEMENT}$ score = average variance inside the bins

$$\mathcal{R} = rac{1}{T}\sum_{t=1}^T \|a_t - ar{a}(oldsymbol{c}_t)\|^2$$

- $m{a}_t = ext{action at time } t$
- $ar{a}(x) \equiv ar{a}_T(x) = ext{average of the actions in all periods where the forecast was } x$
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$
- $\mathcal{R} \equiv \mathcal{R}_T = \mathsf{REFINEMENT}$ score = average variance inside the bins

• $\mathcal{B} \equiv \mathcal{B}_T = \text{BRIER} (1950) \text{ score} = \text{average}$ distance between a_t and c_t

• $\mathcal{B} \equiv \mathcal{B}_T = \mathsf{BRIER} \ (1950) \ \mathsf{score} = \mathsf{average}$ distance between a_t and c_t

$$\mathcal{B} = rac{1}{T}\sum_{t=1}^T \|a_t - oldsymbol{c}_t\|^2$$

• $\mathcal{B} \equiv \mathcal{B}_T = \text{BRIER} (1950) \text{ score} = \text{average}$ distance between a_t and c_t

• $\mathcal{B} \equiv \mathcal{B}_T = \mathsf{BRIER} \ (1950) \ \mathsf{score} = \mathsf{average}$ distance between a_t and c_t

$$\mathcal{B} = \mathcal{R} + \mathcal{K}$$

• $\mathcal{B} \equiv \mathcal{B}_T = \mathsf{BRIER} \ (1950) \ \mathsf{score} = \mathsf{average}$ distance between a_t and c_t

$$\mathcal{B} = \mathcal{R} + \mathcal{K}$$

Brier = refinement + Calibration

• $\mathcal{B} \equiv \mathcal{B}_T = \mathsf{BRIER} \ (1950) \ \mathsf{score} = \mathsf{average}$ distance between a_t and c_t

$$\mathcal{B} = \mathcal{R} + \mathcal{K}$$

BRIER = REFINEMENT + CALIBRATION

Proof.

$$\mathbb{E}[(X-c)^2] = \mathbb{V}ar(X) + (ar{X}-c)^2$$

where c is a constant and $oldsymbol{X}$ is a random variable with $ar{oldsymbol{X}} = \mathbb{E}[oldsymbol{X}]$

• $\mathcal{B} \equiv \mathcal{B}_T = \mathsf{BRIER} \ (1950) \ \mathsf{score} = \mathsf{average}$ distance between a_t and c_t

$$\mathcal{B} = \mathcal{R} + \mathcal{K}$$

Brier = refinement + Calibration

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: CALIBRATION = 0 IN-BIN VARIANCE = 0

F2: CALIBRATION = 0 IN-BIN VARIANCE = $\frac{1}{4}$

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1:
$$\mathcal{K} = 0$$
 $\mathcal{R} = 0$

F2:
$$K = 0$$
 $R = \frac{1}{4}$

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1:
$$\mathcal{K} = 0$$
 $\mathcal{R} = 0$ $\mathcal{B} = 0$

F2:
$$K = 0$$
 $R = \frac{1}{4}$ $B = \frac{1}{4}$

"Experts"

Testing experts:

"Experts"

Testing experts:

✓ BRIER score

"Experts"

Testing experts:

- **✓ Brier** score
- X CALIBRATION SCORE

"Expertise"

Recognize patterns and regularities in the data

"Expertise"

- Recognize patterns and regularities in the data
- Sort the days into bins that consist of similar days

"Expertise"

- Recognize patterns and regularities in the data
- Sort the days into bins that consist of similar days
- Make the binning as refined as possible

"Expertise"

- Recognize patterns and regularities in the data
- Sort the days into bins that consist of similar days
- Make the binning as refined as possible

LOW REFINEMENT SCORE

• CALIBRATION ($\mathcal{K} \approx 0$) can always be guaranteed in the long run

- CALIBRATION ($\mathcal{K} \approx 0$) can always be guaranteed in the long run
- But: CALIBRATION procedures ignore whatever "EXPERTISE" one has

- CALIBRATION ($\mathcal{K} \approx 0$) can always be guaranteed in the long run
- But: CALIBRATION procedures ignore whatever "EXPERTISE" one has

Question:

Can one GAIN CALIBRATION

without LOSING "EXPERTISE"?

- CALIBRATION ($\mathcal{K} \approx 0$) can always be *guaranteed* in the long run
- But: CALIBRATION procedures ignore whatever "EXPERTISE" one has

Question:

Can one GAIN CALIBRATION without LOSING "EXPERTISE"?

ullet Can one get $\mathcal K$ to 0 without increasing $\mathcal R$?

- CALIBRATION ($\mathcal{K} \approx 0$) can always be *guaranteed* in the long run
- But: CALIBRATION procedures ignore whatever "EXPERTISE" one has

Question:

Can one GAIN CALIBRATION without LOSING "EXPERTISE"?

- Can one get K to 0 without increasing R?
- Can one decrease $\mathcal{B} = \mathcal{R} + \mathcal{K}$ by \mathcal{K} ?

Can one decrease B by K?

- Can one decrease B by K?
- ▶ **Yes:** Replace each forecast c with the corresponding bin average $\bar{a}(c)$

- Can one decrease B by K?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$

$$\Rightarrow \mathcal{K}' = 0$$

- Can one decrease B by K?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$

$$\Rightarrow \mathcal{K}' = 0 \quad \mathcal{R}' = \mathcal{R}$$

- Can one decrease B by K?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$

$$\Rightarrow$$
 $\mathcal{K}^{'}=0$ $\mathcal{R}^{'}=\mathcal{R}$ $\mathcal{B}^{'}=\mathcal{B}-\mathcal{K}$

- Can one decrease B by K?
- ▶ **Yes:** Replace each forecast c with the corresponding bin average $\bar{a}(c)$

$$\Rightarrow \mathcal{K}' = 0$$
 $\mathcal{R}' = \mathcal{R}$ $\mathcal{B}' = \mathcal{B} - \mathcal{K}$

• IN RETROSPECT / OFFLINE (when the $\bar{a}(c)$ are known)

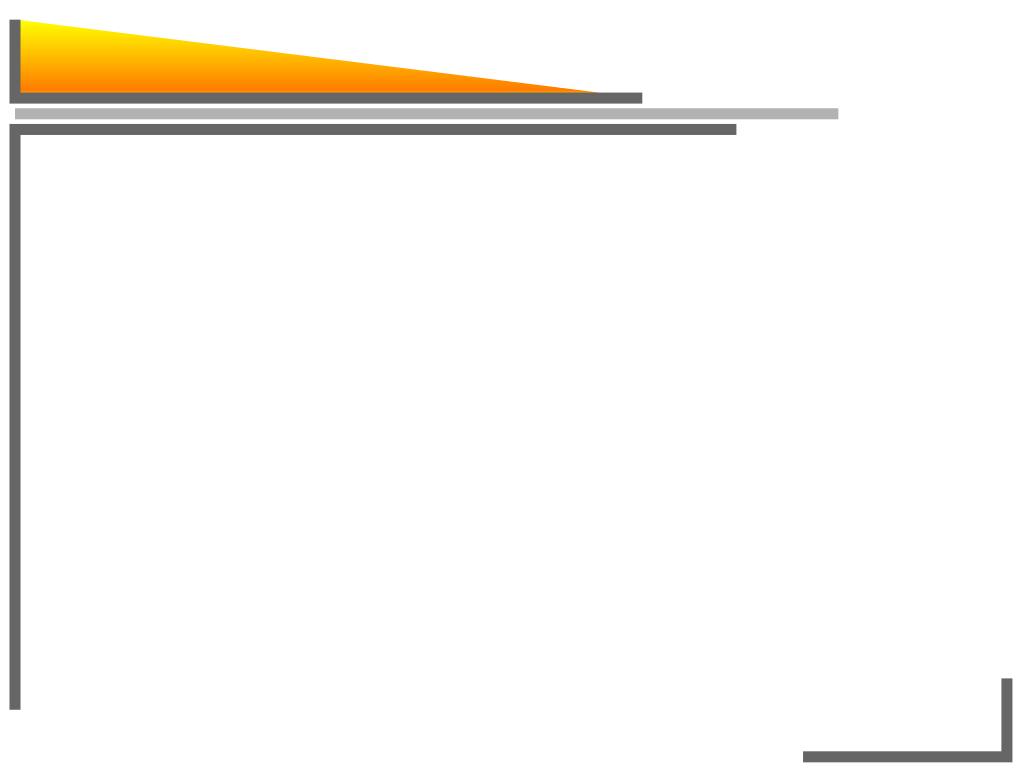
- Can one decrease B by K?
- ▶ **Yes:** Replace each forecast c with the corresponding bin average $\bar{a}(c)$

$$\Rightarrow$$
 $\mathcal{K}^{'}=0$ $\mathcal{R}^{'}=\mathcal{R}$ $\mathcal{B}^{'}=\mathcal{B}-\mathcal{K}$

• IN RETROSPECT / OFFLINE (when the $\bar{a}(c)$ are known)

Question:

Can one do this **ONLINE**?



• Consider a forecasting sequence b_t (in a [finite] set B)

- Consider a forecasting sequence b_t (in a [finite] set B)
- ullet At each time t generate a forecast c_t

- Consider a forecasting sequence b_t (in a [finite] set B)
- ullet At each time t generate a forecast c_t
 - ONLINE: use only b_t and history

- Consider a forecasting sequence b_t (in a [finite] set B)
- ullet At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

$$\mathcal{B}^{c} < \mathcal{B}^{b} - \mathcal{K}^{b}$$

- Consider a forecasting sequence b_t (in a [finite] set B)
- ullet At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

$$\mathcal{B}_T^{\mathrm{c}} \leq \mathcal{B}_T^{\mathrm{b}} - \mathcal{K}_T^{\mathrm{b}} + \mathrm{o}(1) \quad \mathrm{as} \ T \to \infty$$

for ALL sequences a_t and b_t (uniformly)

- Consider a forecasting sequence b_t (in a [finite] set B)
- ullet At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

$$\mathcal{B}^{c} < \mathcal{B}^{b} - \mathcal{K}^{b}$$

- Consider a forecasting sequence b_t (in a [finite] set B)
- ullet At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

$$\mathcal{B}^{c} < \mathcal{B}^{b} - \mathcal{K}^{b} = \mathcal{R}^{b}$$

- Consider a forecasting sequence b_t (in a [finite] set B)
- ullet At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

$$|\mathcal{B}^{c} \leq \mathcal{B}^{b} - \mathcal{K}^{b}| = \mathcal{R}^{b}$$

 $oldsymbol{c}$ "BEATS" b by b 's CALIBRATION score

- Consider a forecasting sequence b_t (in a [finite] set B)
- ullet At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

$$|\mathcal{B}^{c} \leq \mathcal{B}^{b} - \mathcal{K}^{b}| = \mathcal{R}^{b}$$

c "BEATS" b by b's CALIBRATION score

GUARANTEED for ALL sequences of actions and forecasts

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	

time	1	2	3	$oxed{4}$	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	

b:
$$K^{\rm b} = 0.1$$
 $R^{\rm b} = 0$ $R^{\rm b} = 0.1$

$$\mathcal{R}^{\mathrm{b}} = 0$$

$${\cal B}^{
m b} = 0.1$$

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	
c	100%	0%	100%	0%	100%	0%	

b:
$$K^{b} = 0.1$$
 $R^{b} = 0$ $B^{b} = 0.1$

$$\mathcal{R}^{\mathrm{b}} = 0$$

$${\cal B}^{
m b} = 0.1$$

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	
c	100%	0%	100%	0%	100%	0%	

b:
$$K^{b} = 0.1$$
 $R^{b} = 0$ $R^{b} = 0.1$

$$\mathcal{R}^{\mathrm{b}} = 0$$
 \mathcal{B}^{b}

$$c$$
: $\mathcal{K}^{c} = 0$

c:
$$\mathcal{K}^{c} = 0$$
 $\mathcal{R}^{c} = 0$ $\mathcal{B}^{c} = 0$

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	
c	100%	0%	100%	0%	100%	0%	

b:
$$K^{\rm b} = 0.1$$
 $R^{\rm b} = 0$ $R^{\rm b} = 0.1$

c:
$$\mathcal{K}^{c} = 0$$
 $\mathcal{R}^{c} = 0$ $\mathcal{B}^{c} = 0$

$$c$$
 calibeats b : $\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	
c	100%	0%	100%	0%	100%	0%	

b:
$$K^{\rm b} = 0.1$$
 $R^{\rm b} = 0$ $R^{\rm b} = 0.1$

c:
$$\mathcal{K}^{c} = 0$$
 $\mathcal{R}^{c} = 0$ $\mathcal{B}^{c} = 0$

$$c$$
 calibeats b : $\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}} = \mathcal{R}^{\mathrm{b}}$

(that was easy ...)

(that was easy ...)

Can one CALIBEAT in general, non-stationary, situations?

(that was easy ...)

Can one CALIBEAT in general, non-stationary, situations?

Weather is arbitrary and not stationary

(that was easy ...)

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary

(that was easy ...)

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- **Binning of** b is not perfect ($\mathbb{R}^b > 0$)

(that was easy ...)

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- **Binning of** b is not perfect ($\mathbb{R}^b > 0$)
- Bin averages do not converge

(that was easy ...)

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- **Binning of** b is not perfect ($\mathbb{R}^b > 0$)
- Bin averages do not converge
- ONLINE

(that was easy ...)

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- **Binning of** b is not perfect ($\mathbb{R}^b > 0$)
- Bin averages do not converge
- ONLINE
- GUARANTEED (even against adversary)

Theorem

There exists a **CALIBEATING** procedure

A Way to Calibeat

A Way to Calibeat

Theorem

The procedure

$$oldsymbol{c}_t = ar{a}_{t-1}^{ ext{b}}(b_t)$$

GUARANTEES b-CALIBEATING

A Simple Way to Calibeat

Theorem

The procedure

$$oldsymbol{c}_t = ar{a}_{t-1}^{ ext{b}}(b_t)$$

GUARANTEES b-CALIBEATING

Forecast the average action of the current *b*-forecast

$$\mathbb{V} ext{ar} \; = \; rac{1}{T} \sum_{t=1}^{T} \left\| x_t - ar{x}_T
ight\|^2$$

$$egin{array}{lll} \mathbb{V} \mathrm{ar} &=& rac{1}{T} \sum_{t=1}^{T} \left\| x_t - ar{x}_T
ight\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \left(1 - rac{1}{t}
ight) \left\| x_t - ar{x}_{t-1}
ight\|^2 \end{array}$$

$$egin{array}{lll} \mathbb{V} ext{ar} &=& rac{1}{T} \sum_{t=1}^{T} \left\| x_t - ar{x}_T^{}
ight\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \left(1 - rac{1}{t}
ight) \left\| x_t - ar{x}_{t-1}^{}
ight\|^2 \end{array}$$

$$egin{array}{lll} \mathbb{V} \mathrm{ar} &=& rac{1}{T} \sum_{t=1}^{T} \left\| x_t - ar{x}_T
ight\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \left(1 - rac{1}{t}
ight) \left\| x_t - ar{x}_{t-1}
ight\|^2 \end{array}$$

$$egin{array}{lll} \mathbb{V} \mathrm{ar} &=& rac{1}{T} \sum_{t=1}^{T} \|x_t - ar{x}_T\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \left(1 - rac{1}{t}
ight) \|x_t - ar{x}_{t-1}\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \|x_t - ar{x}_{t-1}\|^2 - \mathrm{o}(1) \end{array}$$

$$egin{array}{lll} \mathbb{V} \mathrm{ar} &=& rac{1}{T} \sum_{t=1}^{T} \|x_t - ar{x}_T\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \left(1 - rac{1}{t}
ight) \|x_t - ar{x}_{t-1}\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \|x_t - ar{x}_{t-1}\|^2 - \mathrm{o}(1) \end{array}$$

(*)
$$o(1) = O\left(\frac{1}{T}\sum_{t=1}^{T} \frac{1}{t}\right) = O\left(\frac{\log T}{T}\right)$$

$$egin{array}{lll} \mathbb{V} \mathrm{ar} &=& rac{1}{T} \sum_{t=1}^{T} \|x_t - ar{x}_T\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \left(1 - rac{1}{t}
ight) \|x_t - ar{x}_{t-1}\|^2 \ &=& rac{1}{T} \sum_{t=1}^{T} \|x_t - ar{x}_{t-1}\|^2 - \mathrm{o}(1) \end{array}$$

Proof: "Online Variance"

$$\mathbb{V}\text{ar} = \frac{1}{T} \sum_{t=1}^{T} \|x_t - \bar{x}_T\|^2 \\
= \frac{1}{T} \sum_{t=1}^{T} \left(1 - \frac{1}{t}\right) \|x_t - \bar{x}_{t-1}\|^2 \\
= \frac{1}{T} \sum_{t=1}^{T} \|x_t - \bar{x}_{t-1}\|^2 - o(1) \\
= \widetilde{\mathbb{V}\text{ar}} - o(1)$$

Proof: "Online Variance"

$$\mathbb{V}\mathrm{ar} = \mathbb{V}\mathrm{ar} - \mathrm{o}(1)$$

Proof: "Online Refinement"

$$\mathbb{V}\mathrm{ar} = \widetilde{\mathbb{V}\mathrm{ar}} - \mathrm{o}(1)$$
 $\mathcal{R}^\mathrm{b} = \widetilde{\mathcal{R}}^\mathrm{b} - \mathrm{o}(1)$

Proof: "Online Refinement"

$$egin{array}{lll} \mathbb{V}\mathrm{ar} &=& \widetilde{\mathbb{V}}\mathrm{ar} - \mathrm{o}(1) \ & \mathcal{R}^\mathrm{b} &=& \widetilde{\mathcal{R}}^\mathrm{b} - \mathrm{o}(1) \ &=& rac{1}{T} \sum_{t=1}^T \|a_t - ar{a}_{t-1}(b_t)\|^2 - \mathrm{o}(1) \end{array}$$

Proof: "Online Refinement"

$$\mathbb{V}\mathrm{ar} = \widetilde{\mathbb{V}\mathrm{ar}} - \mathrm{o}(1)$$
 $\mathcal{R}^\mathrm{b} = \widetilde{\mathcal{R}}^\mathrm{b} - \mathrm{o}(1)$
 $= \underbrace{\frac{1}{T}\sum_{t=1}^{T}\|a_t - \bar{a}_{t-1}(b_t)\|^2 - \mathrm{o}(1)}_{= \underline{c}_t = \bar{a}_{t-1}(b_t)}$

Theorem

$$\left[oldsymbol{c}_t = ar{a}_{t-1}^{\mathrm{b}}(b_t)
ight]$$

GUARANTEES b-CALIBEATING:

$$\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$$

Self-Calibeating

Theorem

$$oldsymbol{c}_t = ar{a}_{t-1}^{ ext{b}}(b_t)$$

GUARANTEES b-CALIBEATING:

$$\mathcal{B}^{\mathrm{c}} < \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$$

Theorem

$$oldsymbol{c}_t = ar{a}_{t-1}^{ ext{c}}(oldsymbol{c}_t)$$

GUARANTEES C-CALIBEATING:

$$\mathcal{B}^{c} < \mathcal{B}^{c} - \mathcal{K}^{c}$$

Self-Calibeating

Theorem

$$oldsymbol{c}_t = ar{a}_{t-1}^{ ext{b}}(b_t)$$

GUARANTEES b-CALIBEATING:

$$\mathcal{B}^{\mathrm{c}} < \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$$

Theorem

$$oldsymbol{c}_t = ar{a}_{t-1}^{ ext{c}}(oldsymbol{c}_t)$$

GUARANTEES C-CALIBEATING:

$$\beta^{c} \leq \beta^{c} - \mathcal{K}^{c}$$

$$\Leftrightarrow \mathcal{K}^{c} = 0$$

Self-Calibeating = Calibrating

Theorem

$$oldsymbol{c}_t = ar{a}_{t-1}^{ ext{b}}(b_t)$$

GUARANTEES b-CALIBEATING:

$$\mathcal{B}^{\mathrm{c}} < \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$$

Theorem

$$oldsymbol{c}_t = ar{a}_{t-1}^{ ext{c}}(oldsymbol{c}_t)$$

GUARANTEES CALIBRATION:

$$\beta^{c} \leq \beta^{c} - \mathcal{K}^{c}$$

$$\Leftrightarrow \mathcal{K}^{c} = 0$$

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $m{\mathcal{L}} \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $m{g}: m{D}
 ightarrow \mathbb{R}^m$ arbitrary function

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $m{\mathcal{L}} \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $m{g}: m{D}
 ightarrow \mathbb{R}^m$ arbitrary function

Theorem. There exists a probability distribution P on the δ -grid D of C such that

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $m{Q} \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $m{g}: m{D}
 ightarrow \mathbb{R}^m$ arbitrary function

Theorem. There exists a probability distribution ${\color{red}P}$ on the δ -grid ${\color{red}D}$ of ${\color{red}C}$ such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in \boldsymbol{C}$$

Stochastic "Fixed Point"

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $m{Q} \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $m{g}:m{D} o\mathbb{R}^m$ arbitrary function

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in \boldsymbol{C}$$

Stochastic "Fixed Point"

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $m{Q} \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $m{g}:m{D} o\mathbb{R}^m$ arbitrary function

Theorem. There exists a probability distribution ${\it P}$ on the δ -grid ${\it D}$ of ${\it C}$ such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in \boldsymbol{C}$$

Obtained by solving a Minimax problem (LP)

Outgoing Minimax (FH)

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $m{ ilde{\square}}$ $C\subset\mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $m{g}:m{D} o\mathbb{R}^m$ arbitrary function

Theorem. There exists a probability distribution ${\it P}$ on the δ -grid ${\it D}$ of ${\it C}$ such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in \boldsymbol{C}$$

Obtained by solving a Minimax problem (LP)

Stochastic "Fixed Point"

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $m{Q} \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $m{g}:m{D} o\mathbb{R}^m$ arbitrary function

Theorem. There exists a probability distribution ${\it P}$ on the δ -grid ${\it D}$ of ${\it C}$ such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in \boldsymbol{C}$$

Obtained by solving a Minimax problem (LP)

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in \boldsymbol{C}$$

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left| \left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right| \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\|\boldsymbol{v} - \boldsymbol{x}\|^2 - \|\boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x})\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Proof.

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Proof.

ullet wlog (project g(x) to C) $g:D \to C$

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\|\boldsymbol{v} - \boldsymbol{x}\|^2 - \|\boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x})\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Proof.

- ullet wlog (project g(x) to C) g:D o C
- ullet interpolate g:C o C continuous

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Proof.

- ullet wlog (project g(x) to C) g:D o C
- ullet interpolate g:C o C continuous
- apply Brouwer FIXED POINT theorem

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Proof.

- ullet wlog (project g(x) to C) g:D o C
- ullet interpolate g:C o C continuous
- apply Brouwer FIXED POINT theorem

Wrong Proof!

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left| \left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right| \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{oldsymbol{x} \sim oldsymbol{P}} \left[\left\| oldsymbol{v} - oldsymbol{x}
ight\|^2 - \left\| oldsymbol{v} - oldsymbol{g}(oldsymbol{x})
ight\|^2
ight] \leq \delta^2 \quad orall v \in C$$

Right Proof.

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

•
$$h(x,v) := \|v - x\|^2 - \|v - g(x)\|^2$$

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

- $h(x,v) := \|v x\|^2 \|v g(x)\|^2$
- ullet For every distribution Q on $v \in C$: taking $oldsymbol{x} pprox \mathbb{E}_Q\left[v
 ight]$ in D yields $h(oldsymbol{x},Q) \leq \delta^2$

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

- $h(x,v) := \|v x\|^2 \|v g(x)\|^2$
- ullet For every distribution Q on $v \in C$: taking $oldsymbol{x} pprox \mathbb{E}_Q\left[v
 ight]$ in D yields $h(oldsymbol{x},Q) \leq \delta^2$
- \Rightarrow There exists a distribution P on $x \in D$ s.t. $h(P,v) \leq \delta^2$ for every $v \in C$

Outgoing Minimax (FH)

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

- $h(x,v) := \|v x\|^2 \|v g(x)\|^2$
- For every distribution Q on $v \in C$: taking $x pprox \mathbb{E}_Q[v]$ in D yields $h(x,Q) \leq \delta^2$
- \Rightarrow There exists a distribution P on $x \in D$ s.t. $h(P,v) \leq \delta^2$ for every $v \in C$

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

Obtained by solving a MINIMAX problem (LP)

Theorem. There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\|\boldsymbol{v} - \boldsymbol{x}\|^2 - \|\boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x})\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$$

- Obtained by solving a MINIMAX problem (LP)
- Moreover: solving a FIXED POINT problem yields a probability distribution P that is **ALMOST DETERMINISTIC**: its support is included in a ball of size δ

Theorem

There is a stochastic procedure that **GUARANTEES CALIBRATION**

Theorem

There is a stochastic procedure that **GUARANTEES CALIBRATION**

Proof. Self-calibeating + Stochastic Fixed Point

Theorem

There is a stochastic procedure that **GUARANTEES CALIBRATION**

Proof. Self-calibeating + Stochastic Fixed Point

Note. δ -CALIBRATION

Theorem

There is a stochastic procedure that **GUARANTEES CALIBEATING**

Theorem

There is a stochastic procedure that **GUARANTEES CALIBEATING** and **CALIBRATION**

Theorem

There is a stochastic procedure that **GUARANTEES CALIBEATING** and **CALIBRATION**

Proof. Calibeat the **joint** binning of b and c, by applying Stochastic Fixed Point

CONTINUOUS CALIBRATION: combine the days when the forecast was close to p

CONTINUOUS CALIBRATION: combine the days when the forecast was close to p (smooth out the calibration score)

- CONTINUOUS CALIBRATION: combine the days when the forecast was close to p (smooth out the calibration score)
- Theorem:

There exists a *deterministic* procedure that is **CONTINUOUSLY CALIBRATED**.

- CONTINUOUS CALIBRATION: combine the days when the forecast was close to p (smooth out the calibration score)
- Theorem:

There exists a *deterministic* procedure that is **CONTINUOUSLY CALIBRATED**.

Deterministic ⇒ holds also when the forecasts are "leaked"

- CONTINUOUS CALIBRATION: combine the days when the forecast was close to p (smooth out the calibration score)
- Theorem:

There exists a *deterministic* procedure that is **CONTINUOUSLY CALIBRATED**.

Deterministic ⇒ holds also when the forecasts are "leaked"

Foster and Kakade (2004, 2006) Foster and Hart (2018, **2021**)

Theorem

There is a *deterministic* procedure that **GUARANTEES CALIBEATING**

Theorem

There is a *deterministic* procedure that **GUARANTEES CALIBEATING** and **CONTINUOUS CALIBRATION**

Theorem

There is a *deterministic* procedure that **GUARANTEES CALIBEATING** and **CONTINUOUS CALIBRATION**

Proof. Calibeat the **joint** binning of b and c, by a Fixed Point result (Brouwer)

Multi-Calibeating

Multi-Calibeating

Theorem

There is a *deterministic* procedure that **GUARANTEES**

simultaneous CALIBEATING of several forecasters

Multi-Calibeating

Theorem

There is a **stochastic** procedure that **GUARANTEES**

simultaneous CALIBEATING of several forecasters

and **CALIBRATION**

Multi-Calibeating

Theorem

There is a **stochastic** procedure that **GUARANTEES**

simultaneous CALIBEATING of several forecasters

and CALIBRATION

Proof. Calibeat the joint binning

In all the results above:

In all the results above:

	CALIBRATION	
Obtained by	Minimax	
Procedure	stochastic	

... and Continuous Calibration

In all the results above:

	CALIBRATION	CONTINUOUS
Obtained by	Minimax	Fixed Point
Procedure	stochastic	deterministic

Claim. The REFINEMENT score is the *minimal*BRIER score over all *relabelings of the bins*:

Claim. The REFINEMENT score is the *minimal*BRIER score over all *relabelings of the bins*:

$$\mathcal{R}_T(\mathrm{b}) = \min_{\phi} \mathcal{B}_T(\phi[\mathrm{b}])$$

Claim. The REFINEMENT score is the *minimal* BRIER score over all *relabelings of the bins*:

$$\mathcal{R}_T(\mathrm{b}) = \min_{\phi} \mathcal{B}_T(\phi[\mathrm{b}])$$

where the minimum is taken over all

$$oldsymbol{\phi}:B o\Delta(A)$$

and

$$\phi[\mathbf{b}] \equiv (\phi(b_1),...,\phi(b_T))$$

Claim. The REFINEMENT score is the *minimal* BRIER score over all *relabelings of the bins*:

$$\mathcal{R}_T(\mathrm{b}) = \min_{\phi} \mathcal{B}_T(\phi[\mathrm{b}])$$

where the minimum is taken over all

$$oldsymbol{\phi}:B o\Delta(A)$$

and

$$\phi[\mathbf{b}] \equiv (\phi(b_1),...,\phi(b_T))$$

Proof. Label each bin b with $\phi(b) = \bar{a}_T(b)$

• c CALIBEATS b:

$$\mathcal{B}_T(\mathbf{c}) \leq \mathcal{R}_T(\mathbf{b}) + o(1)$$

• c CALIBEATS b:

$$\mathcal{B}(\mathbf{c}) \leq \mathcal{R}(\mathbf{b})$$

• c CALIBEATS b:

$$\mathcal{B}(\mathbf{c}) \leq \mathcal{R}(\mathbf{b})$$

$$\mathcal{B}(\mathbf{c}) \leq \min_{\phi} \mathcal{B}(\phi[\mathbf{b}])$$

• c CALIBEATS b:

$$\mathcal{B}(\mathbf{c}) \leq \mathcal{R}(\mathbf{b})$$

$$\mathcal{B}(\mathbf{c}) \leq \min_{\phi} \mathcal{B}(\phi[\mathbf{b}])$$

• c MULTI-CALIBEATS $\mathbf{b_1},...,\mathbf{b_N}$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{\boldsymbol{\phi}} \mathcal{B}(\boldsymbol{\phi}[\mathbf{b}_1,...,\mathbf{b}_N])$$

• c CALIBEATS b:

$$\mathcal{B}(\mathbf{c}) \leq \mathcal{R}(\mathbf{b})$$

$$\mathcal{B}(\mathbf{c}) \leq \min_{\phi} \mathcal{B}(\phi[\mathbf{b}])$$

• c MULTI-CALIBEATS $\mathbf{b_1},...,\mathbf{b_N}$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{\phi} \mathcal{B}(\phi[\mathbf{b}_1,...,\mathbf{b}_N])$$

where the minimum is taken over all relabelings of the joint bins

$$oldsymbol{\phi}: B_1 imes ... imes B_N o \Delta(A)$$

• c MULTI-CALIBEATS $\mathbf{b_1},...,\mathbf{b_N}$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{\phi} \mathcal{B}(\phi[\mathbf{b}_1, ..., \mathbf{b}_N])$$

• c MULTI-CALIBEATS $\mathbf{b_1},...,\mathbf{b_N}$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{\boldsymbol{\phi}} \mathcal{B}(\boldsymbol{\phi}[\mathbf{b}_1,...,\mathbf{b}_N])$$

• c MULTI-CALIBEATS $b_1, ..., b_N$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{\phi} \mathcal{B}(\phi[\mathbf{b}_1, ..., \mathbf{b}_N])$$

• c is as strong as $b_1, ..., b_N$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{1 \leq n \leq N} \mathcal{B}(\mathbf{b}_n)$$

• c MULTI-CALIBEATS $\mathbf{b_1},...,\mathbf{b_N}$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{\phi} \mathcal{B}(\phi[\mathbf{b}_1, ..., \mathbf{b}_N])$$

• c is as strong as $b_1, ..., b_N$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{1 \leq n \leq N} \mathcal{B}(\mathbf{b}_n)$$

$$\mathcal{B}(\mathbf{c}) \leq \min_{w_1,...,w_N} \mathcal{B}(w_1\mathbf{b}_1 + ... + w_N\mathbf{b}_N)$$

• c MULTI-CALIBEATS $b_1, ..., b_N$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{\boldsymbol{\phi}} \mathcal{B}(\boldsymbol{\phi}[\mathbf{b}_1,...,\mathbf{b}_N])$$

• c is as strong as $b_1, ..., b_N$:

$$\mathcal{B}(\mathbf{c}) \leq \min_{1 \leq n \leq N} \mathcal{B}(\mathbf{b}_n)$$

$$\mathcal{B}(\mathbf{c}) \leq \min_{w_1,...,w_N} \mathcal{B}(w_1\mathbf{b}_1 + ... + w_N\mathbf{b}_N)$$

CALIBEATING is **stronger**!

TAKING PRIDE IN OUR RECORD

TAKING PRIDE IN OUR RECORD

"We have correctly forecasted 8 of the last 5 recessions"

TAKING PRIDE IN OUR RECORD

"We have correctly forecasted 8 of the last 5 recessions"