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o Forecaster says: “The probability of rain
tomorrow is p”

® Forecaster is CALIBRATED If

» for every forecast p:
in the days when the forecast was p, the
proportion of rainy days equals p
(or: is close to p in the long run)
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(no matter what the weather will be)
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Foster and Vohra 1994 [publ 1998]
Hart 1995: proof by Minimax Theorem
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Hart and Mas-Colell 1996 [publ 2000]:
procedure by Blackwell's Approachability
Foster 1999: simple procedure

Foster and Hart 2016 [publ 2021]: simplest
procedure, by “Forecast Hedging”
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o B = By = BRIER (1950) score = average
distance between a; and ¢;
9o

B=R+K
BRIER — REFINEMENT + CALIBRATION

Proof.

E[(X — ¢)*] = Var(X) + (X — ¢)?

where c is a constant and X is a random
variable with X = E[X] I
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days
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= [ LOW REFINEMENT SCORE]
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# Can one decrease B by IC ?

# Yes: Replace each forecast c with the
corresponding bin average a(c)

= K =0 R =R B =B-K
#» IN RETROSPECT / OFFLINE
(when the a(c) are known)

/

Question:
Can one do this ONLINE ?
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# At each time t generate a forecast ¢;
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# such that
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s GUARANTEED for ALL seguences

of actions and forecasts
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I Calibeating

(that was easy ...)

Can one CALIBEAT in general, non-stationary,
situations ?

Weather is arbitrary and not stationary
Forecasts of b are arbitrary

Binning of b is not perfect (RP > 0)
Bin averages do not converge
ONLINE

© o o o o 0

GUARANTEED (even against adversary)

1
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Theorem

/ The procedure \

[Ct = Q;_4 (bt)l

KG UARANTEES b-CALIBEATING/

Forecast the average action
of the current b-forecast
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Theorem. There exists a probability distribution
P on the o-grid D of C such that

Eep ([[v = 2|* = o - g(@)|*| <6* VweC

# Obtained by solving a MINIMAX problem
(LP)

# Moreover: solving a FIXED POINT problem
yields a probability distribution P that is
ALMOST DETERMINISTIC: its support is

included in a ball of size § I
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Theorem

4 There Is a stochastic procedure\
that GUARANTEES CALIBEATING
\ and CALIBRATION /

Proof. Calibeat the joint binning of b and ¢,

by applying Stochastic Fixed Point
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® CONTINUOUS CALIBRATION: combine the
days when the forecast was close to p
(smooth out the calibration score)

o Theorem:

é Y

There exists a deterministic procedure
that IS CONTINUOUSLY CALIBRATED.

\ J

Deterministic => holds also when the
forecasts are “leaked”

Foster and Kakade (2004, 2006)

Foster and Hart (2018, 2021) I
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I Continuous-Calibrated Calibeating

Theorem

4 There is a deterministic procedure\
that GUARANTEES CALIBEATING
\ and CONTINUOUS CALIBRATION /

Proof. Calibeat the joint binning of b and ¢,

by a Fixed Point result (Brouwer)
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Theorem

/There is a stochastic procedur}

that GUARANTEES

simultaneous CALIBEATING
of several forecasters

K and CALIBRATION /
Proof. Calibeat the joint binning I
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... and:Continuous Calibration

In all the results above:

CALIBRATION | CONTINUOUS
CALIBRATION

Obtained by Minimax Fixed Point

Procedure stochastic deterministic
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I Refinement Score and Brier Score

Claim. The REFINEMENT score is the minimal
BRIER score over all relabelings of the bins:

Rr(b) = min Br(a[b])

where the minimum is taken over all
¢: B — A(A)
and

¢[b] = (¢(b1), ..., ¢(br))
Proof. Label each bin b with ¢(b) = ar(b)

|
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Calibeating and Brier Score

® c CALIBEATS b:

B(c) < R(b)

B(c) < min B(¢[b])

® C MULTI-CALIBEATS by, ..., by

B(c) < min B(¢[by, ..., bn])

where the minimum is taken over all
relabelings of the joint bins

Qb:le...XBN—)A(A) I
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I Calibeating and Experts

® c MULTI-CALIBEATS by, ..., bx:

B(c) < min B(¢[by, ..., b))

® ciS AS STRONG AS by, ...,bx:

B(c) < min B(b,)

1<n<N

B(c) < min B(wib; + ... + wnyby)

wl,...,wN

[CALIBEATING IS stronger !j
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