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Calibration

Forecaster says: “The probability of rain
tomorrow is p”

Forecaster is CALIBRATED if

for every forecast p:
in the days when the forecast was p, the
proportion of rainy days equals p
(or: is close to p in the long run)
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Calibration

CALIBRATION can be guaranteed

(no matter what the weather will be)

Foster and Vohra 1994 [publ 1998]
Hart 1995: proof by Minimax Theorem
. . .
Hart and Mas-Colell 1996 [publ 2000]:
procedure by Blackwell’s Approachability
Foster 1999: simple procedure
Foster and Hart 2016 [publ 2021]: simplest
procedure, by “Forecast Hedging”
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AVERAGE ACTION (= frequency of rain)
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calibration

c1 c2
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(as of June 2019)



Calibration in Practice

Calibration plot of ElectionBettingOdds.com
(2016 – 2018)
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B ≡ BT = BRIER (1950) score = average
distance between at and ct

B = R + K

BRIER = REFINEMENT + CALIBRATION

Proof.

E[(X − c)2] = Var(X) + (X̄ − c)2

where c is a constant and X is a random
variable with X̄ = E[X]
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time 1 2 3 4 5 6 ...

rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0%

F2 50% 50% 50% 50% 50% 50%

F1: K = 0 R = 0
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Example

time 1 2 3 4 5 6 ...

rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0%

F2 50% 50% 50% 50% 50% 50%

F1: K = 0 R = 0 B = 0

F2: K = 0 R = 1

4
B = 1

4
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Recognize patterns and regularities in the
data

Sort the days into bins that consist of similar
days

Make the binning as refined as possible

⇔ LOW REFINEMENT SCORE
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Can one decrease B by K ?

Yes: Replace each forecast c with the
corresponding bin average ā(c)

⇒ K
′

= 0 R
′

= R B
′

= B − K

IN RETROSPECT / OFFLINE

(when the ā(c) are known)

Question:

Can one do this ONLINE ?
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Consider a forecasting sequence bt

(in a [finite] set B)

At each time t generate a forecast ct

ONLINE: use only bt and history

such that

Bc ≤ Bb − Kb = Rb

c “BEATS” b by b ’s CALIBRATION score

GUARANTEED for ALL sequences
of actions and forecasts
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Calibeating

(that was easy ...)

Can one CALIBEAT in general, non-stationary,
situations ?

Weather is arbitrary and not stationary

Forecasts of b are arbitrary

Binning of b is not perfect (Rb > 0)

Bin averages do not converge

ONLINE

GUARANTEED (even against adversary)



Calibeating



Calibeating

Theorem

There exists a CALIBEATING procedure



A Way to Calibeat



A Way to Calibeat

Theorem

The procedure

ct = āb
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A Simple Way to Calibeat

Theorem

The procedure

ct = āb
t−1(bt)

GUARANTEES b-CALIBEATING

Forecast the average action
of the current b-forecast

y
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Proof: “Online Refinement”

Var = Ṽar − o(1)

Rb = R̃
b

− o(1)

=
1

T

T∑

t=1

‖at − āt−1(bt)‖
2

︸ ︷︷ ︸
− o(1)

= Bc − o(1)

ct = āt−1(bt)
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t−1(bt)

GUARANTEES b-CALIBEATING:

Bc ≤ Bb − Kb

Theorem

ct = āc
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Self-Calibeating = Calibrating

Theorem

ct = āb
t−1(bt)

GUARANTEES b-CALIBEATING:

Bc ≤ Bb − Kb

Theorem

ct = āc
t−1(ct)

GUARANTEES CALIBRATION:

Bc ≤ Bc − Kc

⇔ Kc = 0
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Stochastic “Fixed Point”

How do we get ct “close to” āt−1(ct) ?

C ⊂ R
m compact convex

D ⊂ C finite δ-grid of C (for δ > 0)

g : D → R
m arbitrary function
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Theorem. There exists a probability distribution
P on the δ-grid D of C such that

Ex∼P

[
‖v − x‖2 − ‖v − g(x)‖2

]
≤ δ2 ∀v ∈ C

Obtained by solving a MINIMAX problem
(LP)

Moreover: solving a FIXED POINT problem
yields a probability distribution P that is
ALMOST DETERMINISTIC: its support is
included in a ball of size δ



Calibrating



Calibrating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBRATION



Calibrating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBRATION

Proof. Self-calibeating + Stochastic Fixed Point



Calibrating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBRATION

Proof. Self-calibeating + Stochastic Fixed Point

Note. δ-CALIBRATION
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Calibrated Calibeating

Theorem

There is a stochastic procedure

that GUARANTEES CALIBEATING

and CALIBRATION

Proof. Calibeat the joint binning of b and c,
by applying Stochastic Fixed Point
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Continuous Calibration

CONTINUOUS CALIBRATION: combine the
days when the forecast was close to p
(smooth out the calibration score)

Theorem:

There exists a deterministic procedure

that is CONTINUOUSLY CALIBRATED.

Deterministic ⇒ holds also when the
forecasts are “leaked”

Foster and Kakade (2004, 2006)
Foster and Hart (2018, 2021)
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Continuous-Calibrated Calibeating

Theorem

There is a deterministic procedure

that GUARANTEES CALIBEATING

and CONTINUOUS CALIBRATION

Proof. Calibeat the joint binning of b and c,
by a Fixed Point result (Brouwer)
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Theorem

There is a stochastic procedure

that GUARANTEES

simultaneous CALIBEATING

of several forecasters

and CALIBRATION

Proof. Calibeat the joint binning
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... and Continuous Calibration

In all the results above:

CALIBRATION CONTINUOUS

CALIBRATION

Obtained by Minimax Fixed Point

Procedure stochastic deterministic



Refinement Score and Brier Score



Refinement Score and Brier Score

Claim. The REFINEMENT score is the minimal
BRIER score over all relabelings of the bins:



Refinement Score and Brier Score

Claim. The REFINEMENT score is the minimal
BRIER score over all relabelings of the bins:

RT (b) = min
φ

BT (φ[b])



Refinement Score and Brier Score

Claim. The REFINEMENT score is the minimal
BRIER score over all relabelings of the bins:

RT (b) = min
φ

BT (φ[b])

where the minimum is taken over all

φ : B → ∆(A)

and

φ[b] ≡ (φ(b1), ..., φ(bT ))



Refinement Score and Brier Score

Claim. The REFINEMENT score is the minimal
BRIER score over all relabelings of the bins:

RT (b) = min
φ

BT (φ[b])

where the minimum is taken over all

φ : B → ∆(A)

and

φ[b] ≡ (φ(b1), ..., φ(bT ))

Proof. Label each bin b with φ(b) = āT (b)
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c CALIBEATS b:
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B(c) ≤ R(b)

B(c) ≤ min
φ

B(φ[b])

c MULTI-CALIBEATS b1, ..., bN :

B(c) ≤ min
φ

B(φ[b1, ..., bN ])

where the minimum is taken over all
relabelings of the joint bins

φ : B1 × ... × BN → ∆(A)
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Calibeating and Experts

c MULTI-CALIBEATS b1, ..., bN :

B(c) ≤ min
φ

B(φ[b1, ..., bN ])

c is AS STRONG AS b1, ..., bN :

B(c) ≤ min
1≤n≤N

B(bn)

B(c) ≤ min
w1,...,wN

B(w1b1 + ... + wNbN)

CALIBEATING is stronger !
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