Online Optimization over RIS Networks via Mixed Integer Programming

Kohei Hatano Kyushu U/RIKEN AIP

Workshop on regret, optimization & games Nov. 05 20025

Joint work with

- □Shuta Kajihara (Kyushu)
- ☐Sherief Hashima (RIKEN AIP)
- □Eiji Takimoto (Kyushu)

Preliminary work[Kajihara+ 25] appeared at ICMU2025

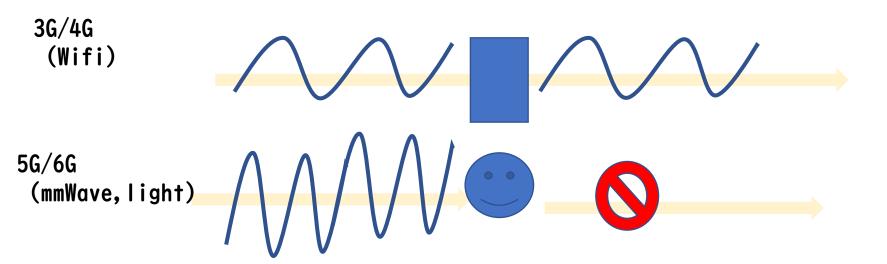
Online Optimization in Communication Engineering(CE)

- ■Many of recent work of CE uses machine learning techniques including deep learning
- □Some work focuses on online optimization in CE with online learning, e.g., bandit
 - Channel selection (channels are arms)
 - ■Online optimization in networks using UAVs (places are arms)
- □Online Optimization techniques can contribute to CE
 - ■Many tasks need to be done online
 - ■Robustness to changing environments

Background

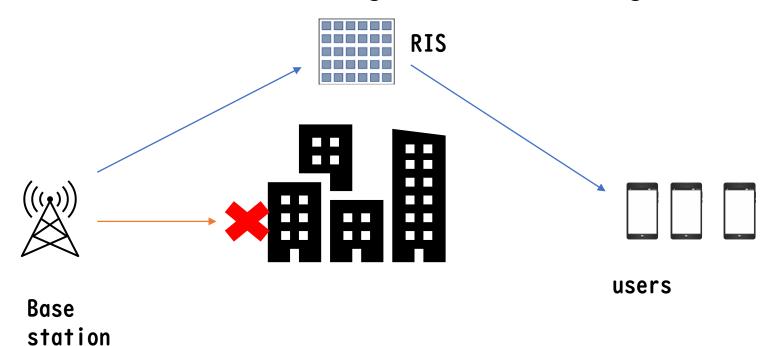
- □Necessity of Optimization in 5G/6G wireless communication
 - ■Infrastructure with higher throughput
 - ■5G/6G systems use higher frequency waves than Wifi
 - ■Vulnerable to obstacles

selective communication necessary

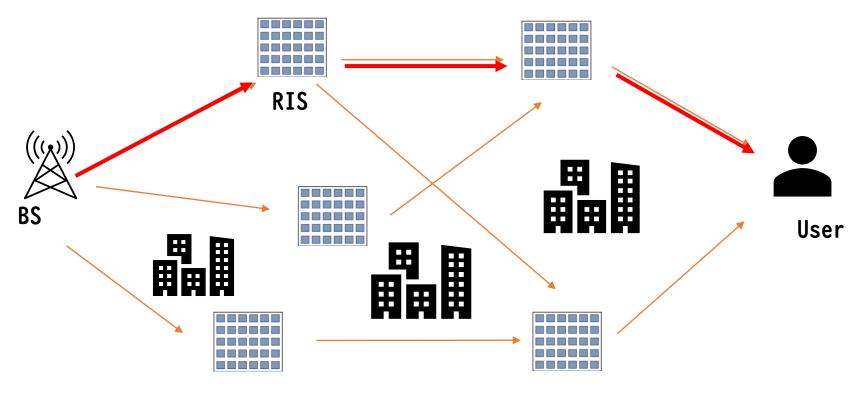


Reconfigurable Intelligent Surface (RIS, aka IRS)

- □Consists of multiple reflective units
- □Each reflective unit can reflect signals and control their angles and strength



Network of RIS[Cf. Asif+20]



Advantage: can avoid obstacles

Disadvantage: Relaying with RIS weaken the strength of waves due to distance, weather, moving obstacles and etc.

Want to find a path optimizing the strength of received signal to user

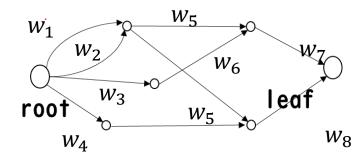
Related Work[Asif+ 22]

Input: DAG G=(V,E) with single root and leaf, decreasing ratios $w \in [0,1]^E$

Output:
$$P^* = \underset{P \in \mathcal{P}}{\operatorname{argmax}} \prod_{e \in P} w_t(e)$$

path maximizing product of weight along with it

 \mathcal{P} : set of paths from root to leaf

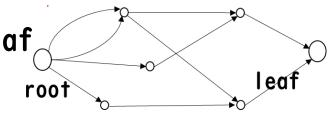


- □Offline problem solved by Dijkstra method
- □Online setting not considered

Our Formulation

(Adversarial full info. setting)

Given: DAG G = (V, E) with root and leaf



For each round t = 1, 2, ..., T:

Player

1. Path $P_t \in \mathcal{P}$

Adversary

2. Decreasing ratios $w_t \in [0,1]^E$

3. Received power $g_t(P_t) = \prod_{e \in P_t} w_t(e)$

Formulation(2)

Goal: Minimize

$$Regret(T) = \max_{P^* \in \mathcal{P}} \sum_{t=1}^{T} g_t(P^*) - \sum_{t=1}^{T} g_t(P_t)$$

$$= \max_{P^* \in \mathcal{P}} \sum_{t=1}^{T} \prod_{e \in P^*} w_t(e) - \sum_{t=1}^{T} \prod_{e \in P_t} w_t(e)$$

Cumulative received power Cumulative received power of best fixed path of Player

- Combinatorial Online Prediction with non-linear rewards
- Different from standard Online shortest (longest)
 path problem with additive rewards

Our Contribution

- □Formulation of Online Optimization over RIS network
- **□**We show
 - Corresponding offline problem is NP-hard
 - ■But reformulated as a Mixed Integer Program(MIP)
- Implication
 - ■Low Regret Guarantee by FPL[Suggala+ 20] using a MIP solver

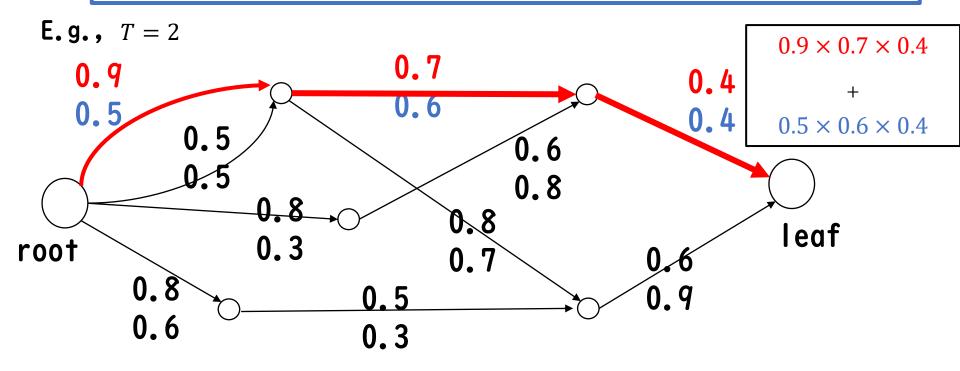
Offline Problem:

```
Sum of Product Longest Path Problem (SPLP)

Input: DAG G = (V, E),

decreasing ratios w_1, w_2, ..., w_T (w_t \in [0,1]^E)

Output: P^* = \underset{P \in \mathcal{P}}{\operatorname{argmax}} \sum_{t=1}^T \prod_{e \in P} w_t(e)
```



NP-hardness of SPLP

□Reduction from 2-MinSAT[Kohli+,94]

2-MinSAT

Input:2-CNF(CNF with at most 2 literals in each clause)

E.g.
$$(x_1 \vee \overline{x_3}) \wedge x_4 \wedge (\overline{x_1} \vee x_5)$$

Output: Is there an assignment $a \in \{0,1\}^n$ for which $\leq k$ clauses satisfied?

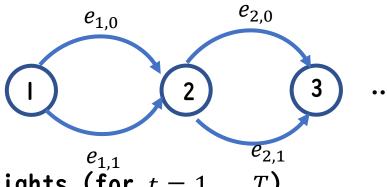
E.g. yes for k=1 with a=01100

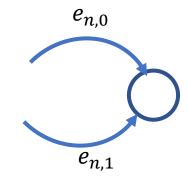
Thm. [Kohli+,94] 2-MinSAT is NP-complete

NP-hardness of SPLP(2): Reduction from 2-MinSAT to SPLP

Input: 2-CNF
$$C_1 \wedge C_2 \wedge \cdots \wedge C_T$$

Construct the DAG G=(V,E)





Each assignment acorresponds to Path P_a

Weights (for
$$t = 1, ..., T$$
)

$$w_t(e_{i,0}) = \begin{cases} 0, & \text{if } \overline{x_i} \in C_t \\ 1, & \text{o.w.} \end{cases}$$

$$w_t(e_{i,1}) = \begin{cases} 0, & \text{if } x_i \in C_t \\ 1, & \text{o. w.} \end{cases}$$

Prop.
$$\prod_{e \in P_a} w_t(e) = 0 \ (= 1) \Leftrightarrow C_t(a) = 1 \ (= 0)$$

NP-hardness of SPLP(3)

Prop. $\prod_{e \in P_a} w_t(e) = 0 \ (= 1) \Leftrightarrow C_t(a) = 1 (= 0)$ Implies

$$T - \sum_{t=1}^{T} \prod_{e \in P_a} w_t(e) = \sum_{t=1}^{T} C_t(a)$$

So, $P_{a^*} = \arg \max_{P \in \mathcal{P}} \iff a^* = \arg \min_{a \in \{0,1\}^n} \sum_{t=1}^T C_t(a)$

Poly-time algorithm for SPLP implies one for 2-MinSAT

MIP for SPLP

Initial Formulation
$$\max_{P \in \{0,1\}^E} \sum_{t=1}^T \prod_{e \in P} w_t(e) \left(= \sum_{t=1}^T \prod_{e \in E} w_t(e)^{P_e} \right)$$

sub.to: P is a path

Convex non-linear optimization at a glance

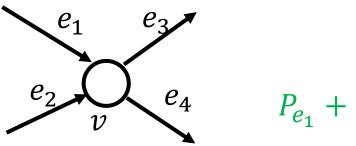
Flow Constraints

$$P \in \{0,1\}^E$$
 is a path \Leftrightarrow
$$\sum_{e.u=root} P_e = 1$$

$$\sum_{e.v=v} P_e = \sum_{e.u=v} P_e$$
 for any $v \in V \setminus \{root\}$

(flow constraints)

where edge e starts from node e.u towards node e.v



$$P_{e_1} + P_{e_2} = P_{e_3} + P_{e_4} = 1$$

Received Power Constraints

New variables

 $s_{t,v}$: sum of received power on node v at round t

Then, objective is
$$\sum_{t=1}^T \prod_{e \in P^*} w_t(e) = \sum_{t=1}^T s_{t,leaf}$$
 (linear),

provided that

$$\sum_{e.v=v} w_t(e) P_e s_{t,e.u} = s_{t,v} \text{ for } v \in V \setminus \{root\}$$
 (bilinear) Received power constraints

$$S_{t,e_1.u}$$
 $w_t(e_1)$
 e_1
 v
 $w_t(e_1)P_{e_1}S_{t,e_1.u} + w_t(e_2)P_{e_2}S_{t,e_2.u}$
 $w_t(e_2)$
 $w_t(e_2)$
 $w_t(e_2)$

Received Power Constraints(2)

New variable $z_{t,e}$ s.t.

```
z_{t,e} = P_e s_{t,e,u}
\Leftrightarrow
0 \le z_{t,e} \le P_e \quad (P_e = 0 \Rightarrow z_{t,e} = 0)
-(1 - P_e) \le z_{t,e} - s_{t,e,u} \le 0 \quad (P_e = 1 \Rightarrow z_{t,e} = s_{t,e,u})
```

NOTE: This does not hold for relaxed $P_e \in [0,1]$

Then,

$$\sum_{e.v=v} w_t(e) P_e s_{t,e.u} = s_{t,v} \text{ for } v \in V \setminus \{root\}$$
 (bilinear)
$$\Leftrightarrow \sum_{e.v=v} w_t(e) z_t = s_{t,v}$$

$$0 \le z_t \le P_e$$

$$-(1 - P_e) \le z_t \le s_{t,e.u}$$
 (linear)

Thm. SPLP is a MIP

$$\arg\max_{P,s,z} \sum_{t=1}^{T} s_{t,leaf}$$

sub. to

$$\sum_{e:e.u=v} P_e = \sum_{e:e.v=v} P_e, \forall v \in V \setminus \{root\},$$

$$s_{t,root} = 1,$$

Flow Constraints

Received Power

Constraints

$$\sum_{e.v=v} w_t(e) z_{t,e} = s_{t,v}, \forall v \in V \setminus \{root\}, \forall t \in [T],$$

$$0 \le z_{t,e} \le P_e, \ \forall e \in E, \ \forall t \in [T],$$

$$P_e - 1 \le z_{t,e} - s_{t,e.u} \le 0 \ \forall e \in E, \ \forall t \in [T],$$

$$P \in \{0,1\}^E, s \in [0,1]^{V \times T}, z \in [0,1]^{E \times T}$$

|E| + |V|T + |E|T Variables |V| + |E| + T + |V|T + 4|E|T Constraints 19

Implications to Online Problem

- Online Problem can be solved using
 FPL[Sugalla+ 20] for smooth non-linear reward
 functions
- □ Prop. $g_t(P)$ is I-Lipschitz w.r.t. I-norm $|g_t(P) g_t(P')| \le 1 \le |P P'|_1$ for any $P, P' \in \mathcal{P}$ reward function is smooth

$$\begin{array}{ll} \overline{\mathsf{FPL}} & P_t \in \mathrm{argmax}_{P \in \mathcal{P}} \: \{ \sum_{\tau < t} g_\tau(P) + \sigma_t \cdot P \}, \\ & \text{where } \sigma_t \! \sim \! \big(\mathsf{Exp}(\eta) \big)^E \end{array}$$

Follow the Perturbed Leader Implications to Online Problem

Coro. [Suggala+, 20]

FPL achieves

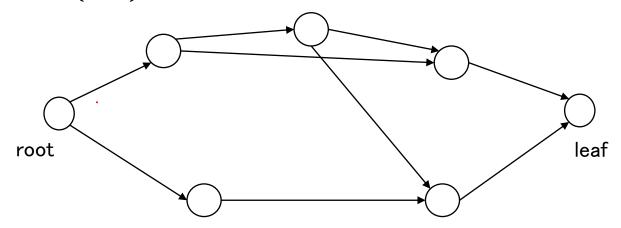
$$Regret(T) = O\left(|E|^{2.5}\sqrt{T}\right),$$

Experiments

□MIP solver : Gurobi optimizer II.0.3

□Algorithms: FPL[Suggala+, 20] & FTL (without perturbation)

 \square DAG G = (V, E) (Same as [Asif+,22])

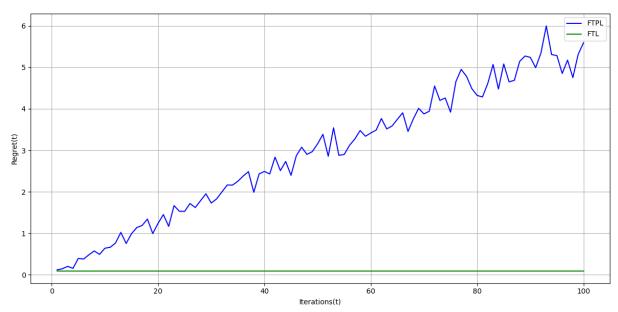


•
$$T = 100$$

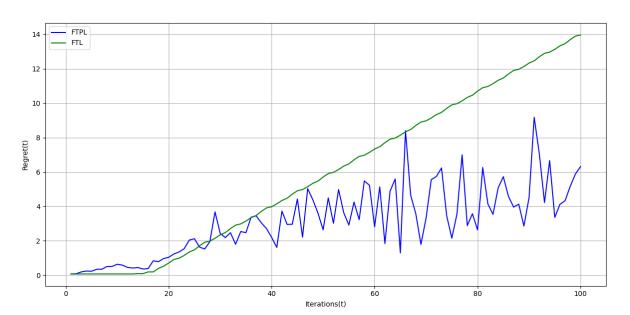
[Ex I] $w_t(e)$ iid from uniform distribution with different means

[Ex 2] adversarial to FTL

Ex 1:random weights



Ex 2: adversarial weights



Summary

- □Combinatorial Online Optimization over RIS network
 - ■Offline problem is NP-hard but MIP
 - ■FPL can be used to obtain low regret
- □Open Questions
 - ■Regret bound for stochastic environments
 - ■Bandit Extensions
 - ■Efficient approximation algorithms

 Cf. 2-MinSAT has 2-approximation algorithm
 - ■Can MIP property used to obtain better bounds?

References

- □[Asif+ 22] A. B. Asif et al., "Optimal path selection, in cascaded intelligent reflecting surfaces," IEEE VTC2022-Fall, 1-5, 2022.
- [Suggala+ 20] A. S. Suggala, P. Netrapalli, "Online Non-Convex Learning; Following the Perturbed Leader is Optimal," ALT2020, PMLR 117:845-861, 2020.
- □[Kajihara+ 25]S. Kajihara, et al., "Online Path Optimization in Cascaded RIS Networks via Mixed Integer Programming," ICMU2025, 2025.