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Bandits for adaptive clinical trials?
® @ -~ i
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For the t-th patient in a clinical trial,
@ choose a treatment (arm) A¢

@ observe its efficacy (reward/response)
Xe € {0,1} : P(X; = 1|Ar = @) = p,

Adaptive treatment allocation / sampling rule:
A; can be chosen based on past outcomes Ai, X1,..., A1, Xi_1
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For the t-th patient in a clinical trial,
@ choose a treatment (arm) A¢

@ observe its efficacy (reward/response)
Xe € {0,1} : P(X; = 1|Ar = @) = p,

Adaptive treatment allocation / sampling rule:
A; can be chosen based on past outcomes Ai, X1,..., A1, Xi_1

=» an idealized model for a Phase Il (confirmatory) trial



Specificities of early stage (Phase I/1l) trials

Multiple responses are typically measured:
e side effects (toxicity)

o different indicators of biological efficacy (blood tests)

Vaccine design: different indicators of the immune response:
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0 Pure Exploration in Multi-objective bandits
© Best Arm Identification (D = 1)
© Adaptive Pareto Exploration

@ Towards Optimal Algorithms



0 Pure Exploration in Multi-objective bandits



Multi-objective bandit

Bandit model
e Karms vy,..., vk
@ vy is a multi-variate distribution in RP with mean Ky € RP
@ Assumption: each marginal of vy is sub-Gaussian

In each round t, an agent selects and arm A; € [K] and observes a
response X; ~ v4,, independently from past observations.

Bandit (Pure Exploration) Algorithm
@ (sampling rule) how is A; selected based on past observation?
e (recommendation rule) guess 5, for a “good set of arms”

o (stopping rule) decide whether to stop collecting observations

=» Goal: make a confident guess with few samples



What is a good set of arms?

S*ZS*(N/L"':/J'K) c [K]

o k, = argmax, g(pk) for some preference function
D
g RP =R, eg gluk) =g wanl

@ Feasible Set: all arms that satisfy some linear constraints
[Katz-Samuels and Scott, 2018]

@ Top Feasible Arm: a feasible arm maximizing one of the
objectives [Katz-Samuels and Scott, 2019]

@ All the arms that are not uniformly worse than the others
=» the Pareto set [Auer et al., 2016]



Pareto Set

Let X C RPD a set of vectors. Let x,y € X.
o x is (strictly) dominated by y (x < y) if Vd € [D], x4 < y¢

@ The Pareto Set is
P(X):={xc X:#yc X suchthat x <y}

@ A vector x € P(X) is called Pareto optimal
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Pareto Set

Let X C RPD a set of vectors. Let x,y € X.
e x is (strictly) dominated by y (x < y) if ¥d € [D], x? < y¢
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Pareto Set Identification with Fixed Confidence

no= (I’l’la"'ay’K)e(RD)K
S*(n) = {kelK]:pu € P(p,. .., pk)}

Pareto Set ldentification algorithm:
e a sampling rule A¢ € [K] : what is the next arm to explore?
=» get a new observation X; ~ vy € RP
e a recommendation rule S, : a guess for S*(1)

@ a stopping rule 7: when to stop the data collection?

Definition

An algorithm is d-correct (on M) if, for all v € M,
Py (Sr # 8*(m)) < 6.

Goal: a d-correct algorithm with small sample complexity E, [7]



© Best Arm Identification (D = 1)



Best Arm Identification with Fixed Confidence

po= (... k) € RK

i(p) = arg max i
€

Best Arm lIdentification algorithm:
@ a sampling rule A¢ € [K] : what is the next arm to explore?
=» get a new observation X; ~ v4, € R

@ a recommendation rule 7 : a guess for i ()

@ a stopping rule 7: when to stop the data collection?

Definition

An algorithm is d-correct (on M) if, for all v € M,
P, (ir # ix(u)) < 6.

Goal: a d-correct algorithm with small sample complexity E, [7]



3 approaches to Best Arm Identification

@ Uniform sampling + Eliminations

Successive Eliminations [Even-Dar et al., 2006]

@ Adaptive sampling based on Confidence Intervals
LUCB [Kalyanakrishnan et al., 2012], UGapE [Gabillon et al., 2012] ...

@ Lower Bound Inspired Algorithms
e.g., [Garivier and Kaufmann, 2016, Degenne et al., 2019, Jourdan et al., 2022]

All algorithms rely on

M) = S 1A= K). ule) = s D Vs
s=1

where (Y} ) are the successive observations from arm k



LUCB: Lower and Upper Confidence Bounds

Ti(t) = [LCBy(t), UCBy(t)].

@ At round t, draw

B: = argmax fip(t)
be[K]

I = argmax
Y % } l l G = ngéBt UCBC(t)

@ Stop at round t if

LCBg,(t) > UCB,(t)

For well-chosen confidence intervals, P, (B; = i,()) > 1 — 4 and

K .
Z 1 In 1 A, — Hx — ks k 7& Iy

A2 5 . minjz;, A, k= iy
a=1 Fix

]E[T(s]:O(




A Sample Complexity Lower Bound

Lower Bound

For é-correct algorithms for Gaussian bandits of variance o2,

Bulr] 2 T.og (55
where )\a)z

T -1 — 2 f (,LLa —
(7)) WSEUEK AEAT (i (1) aez[,:q " 20

with

Ak = {we0,1]":) w,=1}

Alt(i) = {AeRX:i(N)#£i}.




A Sample Complexity Lower Bound

The “minimal distance” has a closed form:

— )2 )2
XeAlt(i ) St o #h 202 (L + L)
but not the characteristic time
N2
(-,—*(p/))—l = sup mln (IU/a MI*)
wely 3Fix 202 (Wl + Wi,)

Approximation of the characteristic time

=» Can we still match this (non-explicit) lower bound?



Track-and-Stop

—.)2
(T ()™ = sup min 2 —#)__
weAy aFix D52 <WL + WL)

Yes, with an appropriate stopping rule

fa(t) — Qg (1))?
T=inf{t € N:min (7a(t) 'uf())

aFif 1 1
t 20’2 (Na(t) ‘l‘ Ni;_f(t)

> [(t,9)
)

where 7} is the empirical best arm at time t



Track-and-Stop

— e B
(-,—*(u))—l = sup min (IU/a Ml*)
WeAg 3Fix 052 ( 141 )

Yes, with an appropriate GLR stopping rule

fa(t) — far(t))?
T=inf{teN: m|n (7 (t) Mt())

a Zt 1 1
202 <Na(t) + W

“t

> ((t,0)
)

where 7} is the empirical best arm at time t

=>» Generalized Likelihood Ratio Statistic for testing

Ho : (i(pe) #7¢) against Hi: (i(p) =17)



Track-and-Stop

.2
(Tu(w)™ = sup min —Ua—ti) _
weAy aFix D52 <WL + WL)

Yes, with an appropriate GLR stopping rule

fa(t) — Qi (1))?
7=inf{ t € N: min ((t) Mt())

a#ly 2 1 1
20 <Na<t) + N ®

> [(t,9)
)

where 7} is the empirical best arm at time t
.. and a sampling rule satisfying

(Nl—(t)NK—(t)) — w*(p)

t t

where w*(p) is the maximizer in w € Ag



Track-and-Stop

Tracking sampling rule: letting Uy = {a: Ny(t) < Vt},

argmin N,(t) if Uy # 0 (forced exploration)
A e ant
o argmax [ wi(f(t)) — N"T(t)] (tracking)
1<a<K

The Track-and-Stop strategy, that uses

@ the Tracking sampling rule
@ the GLR stopping rule with 3(t,d) ~ log (%)
e and recommends i = i, (f1(t))

is 0-correct for every § €]0, 1] and satisfies

o EH[T] T
imsup 7 7y = T 00




Back to Pareto Set ldentification

r = (NL"':NK)G(RD)K
S* () = {kelK]:pmk € P(p,. .-, 1K)}

Pareto Set ldentification algorithm:
@ a sampling rule Ay € [K] : what is the next arm to explore?
=» get a new observation X; ~ va,€ RP
e a recommendation rule §; : a guess for S*(p)

@ a stopping rule 7: when to stop the data collection?

Definition

An algorithm is d-correct if, for all v, P, (S, # S*(p)) < 0.

Goal: a d-correct algorithm with small sample complexity E,[7]



© Adaptive Pareto Exploration



A non-dominance measure

xAy & 3d, x7>y7
& 3d, x4 —y? >0,
e max (x?—y9) >0,

de[D]
N—
:l\l(x7y)
~ X Interpretation: The larger
M(x. ). M(x, y) the “further” y is from

dominating x
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A non-dominance measure

xAy & 3d,x7 >y
s 3d, x¥—y? >0,
e max (x?—y9) >0,

de[D]

N———

:=M(x,y)

Interpretation: The larger
M(x, y) the “further” y is from

M

v)

dominating x

S

M(i,j) == M(pi, 1))




Confidence Regions on M(J, )

fik(t) € RP the empirical mean vector of arm k at time t

M(i,j; t) = M(fi(t), j(t))

1
N Confidence bonus for g
08, A
- K log(Nk(t)) 1
06 Bil(t) ~ \/202 |0g< : ) e
04| 24 |
Fia(t) and for p; — p;
0.2} .
K2 log(Nk(t)) 1 1
‘ ‘ Bij(t) =~ \/202 log ( ) ( + )
00 02 04 06 08 1 J Ni(t) -~ N;(t)

With probability 1 — 6, for all /,/, t,

M(iJ)
M(i.J)

M= (i, t) := M(i, j; t) — Bi(t)

>
< MT(iyj;t) = M, j; ) + Bij(¢)




Adaptive Pareto Exploration

OPT(t) :={i € [K] :Vj € [K]\{i},M™(i,j; t) > 0}
Two interesting arms to explore:

@ a potentially Pareto optimal arm

By = argmax min M (i j;t)
ic[K\OPT(t) J7i

@ the arm that is the closest to potentially dominate it

C: := argmin M~ (B, j; t)
J#Bt

Adaptive Pareto Exploration (APE)

selects the least sampled among these two candidate arms:
At+1 = argmin.cep, ¢y N,(t)




Stopping rule

Letting 5(t) = P*(p(t), ..., Ak (t)), the algorithm stops and

A

recommends S; = 5(t) when

e all arms in 5(t) are confidently non-dominated:
Zi(t) == min min M~ (i,j;t) >0
ieS(t) J#i
e all arms in (5(t))¢ are confidently dominated:

Zo(t) := min max[-M7"(i,j;t)] >0
igS(t) J#i

Stopping rule for (exact) PSI

T = inf{t eN: Zi(t) >0, Z(t) > 0}




Stopping rule

Letting 5(t) = P*(fu(t),. .., Ak (t)), the algorithm stops and
recommends S; = 5(t) when

e all arms in 5(t) are confidently non-dominated:

Z°(t) :== min minM;~(i,j;t) >0
ieS(t) J7

e all arms in (5(t))¢ are confidently dominated:

Z,°(t) := min max [—Ms*(i,j;t)] >0
i¢S(t) J7

Stopping rule for (exact) PSI

ry=inf{t € N: 2(t) > 0,2°(1) > 0}




Sample complexity bound

Assume the observations are bounded in [0,1]°. Then, with
probability larger than 1 — §, APE with the stopping rule 75
outputs S; = §*(p) and satisfies

K
32 2KD 32
ngg A2Iog( 5 Iog<A2)>,
a

a=1 "2

for an appropriate notion of “Pareto gap”.

.

=» same scaling as the bound of [Auer et al., 2016] for an
elimination-based algorithm, with better constants and a
log log(1/A) versus log(1/A)



APE for relaxed PSI

APE can further be combined with different stopping rules to
tackle different relaxations of PSI, e.g. min(7, 7¥) where

8 = inf{t € N: |OPT(t)| > k}

to identify at most k Pareto optimal arms.

Assume the observations are bounded in [0,1]°. Then, with
probability larger than 1 — &, APE with the stopping rule 75 A 7
outputs S; = P*(p) and satisfies

K
32 2KD 32
s SZ§|Og< 5 log <§>> )
a

a=1 a

for a relaxation A, = max(A,, wg).

.




Numerical results
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(Log) Empirical sample complexity of APE (with a k-relaxation) compared to the
algorithm of [Auer et al., 2016] on simulated CovBoost data [Munro et al., 2021]

@ improved practical performance

@ the k-relaxation (provably) reduces the sample complexity



@ Towards Optimal Algorithms



Optimality?

For arms that are multi-variate Gaussian (known covariance ¥),
could we further try to match the lower bound?

Bl > T*()log ( 35

T*(n) 1 = sup inf (Z wi KL(N ,ua,Z)J\/(Aa,Z))).

WED  ANEALL(S* (1
where Alt(S) = {\ € (RP)K : §*(\) # S}.

=» The structure of the alternative is complex for PSI, making
even the computation of “minimal distance” challenging...
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Computing the Minimal Distance

@ there are many ways to alter the Pareto set

¥ y y
1 1 1
+ + +
+2 +2 +2 *2
5 5 5
+ + 4 + 4
+3 4--* +3 ¥ +3
4% 4t 4%
X X X

@ no closed-form is known for the minimal distance

Wi
> 5 e = Ml
k

(1):w— inf
ACALL(S* ()

o for ¥ = 02ly, (1) can be computed by solving O(K|S*()|%)
separably convex problems [Crepon et al., 2024]



Track-And-Stop?

The GLR stopping rule

K

T = inf {t eN: inf ) N"z(t)\mk(t) — AelE0 > B(, 6)}

XeAl(3(1) i3

is already computationally expansive due to the minimal distance.

The Tracking sampling rule is intractable as it further computes

. Wk 2
wy(p) = arg max inf ZE e = AielPe
() =ormmon ind 2 g Ik = Al

=¥ existing alternative approaches based on online learning
[Ménard, 2019, Degenne et al., 2019] also rely on minimal
distance computation.



A Fully Sampling-Based Approach

Posterior Sampling for PSI (PSIPS) (simplified)

For all m < M(t, ), sample ™ = (87", .. ,5,’?) with

5 - (30 )

o If for all m, S*(8™) = S*(ju(t)), stop and return
S¢ = S*(A(1))

o Else, take the first m such that S*(™) # S*(ji(t))
Update an online learning algorithm on Ak with the gain

K
1. am
ge(w) = Z WaEHHa(t) — 0] HQXfl
a=1

to get wy. Select arm Ay ~ (1 — v¢) Wy + V¢ Wexp

v

[Kone et al., 2025], inspired by PEPS [Li et al., 2024]
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Theory: Sample Complexity

Sample complexity
Using budget M and inflation ¢ such that

c(t,9)log M(t,9)

lim sup <1,
5—0 log(1/9)
PSIPS satisfies
E
lim sup Eplrps] < Ti(p)

50 log(1/6) —

Rationale. the truncated prosterior density is close to

.

qe(A) o< exp (— > Nese e — Aksz—l) “Laean(s,)
k

x Ge-1(A) - exp (= l1aa — Al )

which mirrors the behavior of the continuous Exponential Weights
algorithm under quadratic loss.
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Theory: Correctness

The calibration of the PS stopping rule is not as easy as the GLR:
it requires a lower bound on

I_It(Alt(St)c) when St # S*

and thus some anti-concentration results.

For PSIPS to be d-correct we can choose

c(t,d) ~ M and M(t, ) ~ log(t/d)

log(1/0) o




e CovBoost (d = 3) for § = 0.1 (left) and § = 0.01 (right)
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Conclusion

We proposed two approaches to Pareto Set Identification in the
Fixed Confidence Setting:
@ Adaptive Pareto Exploration: finite time bound, sub-optimal
in the asymptotic regime § — 0
e PSIPS, a (tractable !) Lower Bound Inspired algorithm,
optimal in the asymptotic regime

=» which one should we use in practise?

The sampling-based stopping rule is an interesting alternative to
the GLR stopping rule for any complex pure exploration problem

Perspective: multi-objective bandit algorithms always sample all
the marginals of the chosen arm — can we also adaptively select
which marginals to observe?
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The Pareto gaps

[Auer et al., 2016]
For sub-optimal arms i ¢ S*(p),

A= maxm(i,j), m(i,j) = —M(j, )
JES*

while for optimal arms i € §*, A; = min(;", ;) where

5T = min_ min(M(i,j),M(j, i

i jes\(i) (M(i, /) )
o, = min {[M(J, )]+ + 4;

i jE[K]\S*{[ (J )]+ j}




On the effect of correlation

We evaluate the performance of PSIPS on a 5-arm, 2-dimensional
Gaussian instance with correlated objectives.

@ Covariance matrix: 3, with unit variances and correlation
pe(—1,1).

@ p = 0: objectives are independent.

e p— +1 (resp. p — —1): strongly positively (resp. negatively)
correlated objectives.
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