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Bandits for adaptive clinical trials?

B(p1) B(p2) B(p3) B(p4) B(p5)

For the t-th patient in a clinical trial,

choose a treatment (arm) At

observe its efficacy (reward/response)
Xt ∈ {0, 1} : P(Xt = 1|At = a) = pa

Adaptive treatment allocation / sampling rule:
At can be chosen based on past outcomes A1,X1, . . . ,At−1,Xt−1

➜ an idealized model for a Phase III (confirmatory) trial
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Specificities of early stage (Phase I/II) trials

Multiple responses are typically measured:

side effects (toxicity)

different indicators of biological efficacy (blood tests)

Vaccine design: different indicators of the immune response:
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Multi-objective bandit

Bandit model

K arms ν1, . . . , νK

νk is a multi-variate distribution in RD with mean µk ∈ RD

Assumption: each marginal of νk is sub-Gaussian

In each round t, an agent selects and arm At ∈ [K ] and observes a
response Xt ∼ νAt , independently from past observations.

Bandit (Pure Exploration) Algorithm

(sampling rule) how is At selected based on past observation?

(recommendation rule) guess Ŝt for a “good set of arms”

(stopping rule) decide whether to stop collecting observations

➜ Goal: make a confident guess with few samples
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What is a good set of arms?

S⋆ = S⋆(µ1, . . . ,µK ) ⊆ [K ]

k⋆ = argmaxk g(µk) for some preference function
g : RD → R, e.g. g(µk) =

∑D
d=1 wdµ

d
k

Feasible Set: all arms that satisfy some linear constraints
[Katz-Samuels and Scott, 2018]

Top Feasible Arm: a feasible arm maximizing one of the
objectives [Katz-Samuels and Scott, 2019]

All the arms that are not uniformly worse than the others

➜ the Pareto set [Auer et al., 2016]
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Pareto Set

Let X ⊂ RD a set of vectors. Let x , y ∈ X .

x is (strictly) dominated by y (x ≺ y) if ∀d ∈ [D], xd < yd

The Pareto Set is
P(X ) := {x ∈ X : ∄ y ∈ X such that x ≺ y}
A vector x ∈ P(X ) is called Pareto optimal

1 x3 ≺ x1
2 x4 ≺ x2
3 x5 ≺ x1
4 x1 ⊀ x2
5 x2 ⊀ x1

P(X ) = {x1, x2}
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Pareto Set Identification with Fixed Confidence

µ = (µ1, . . . ,µK ) ∈ (RD)K

S⋆(µ) = {k ∈ [K ] : µk ∈ P(µ1, . . . ,µK )}

Pareto Set Identification algorithm:

a sampling rule At ∈ [K ] : what is the next arm to explore?

➜ get a new observation Xt ∼ νAt∈ RD

a recommendation rule Ŝt : a guess for S⋆(µ)

a stopping rule τ : when to stop the data collection?

Definition

An algorithm is δ-correct (on M) if, for all ν ∈ M,
Pν(Ŝτ ̸= S⋆(µ)) ≤ δ.

Goal: a δ-correct algorithm with small sample complexity Eν [τ ]
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Best Arm Identification with Fixed Confidence

µ = (µ1, . . . , µK ) ∈ RK

i⋆(µ) = argmax
k∈[K ]

µk

Best Arm Identification algorithm:

a sampling rule At ∈ [K ] : what is the next arm to explore?

➜ get a new observation Xt ∼ νAt∈ R
a recommendation rule ı̂t : a guess for i⋆(µ)

a stopping rule τ : when to stop the data collection?

Definition

An algorithm is δ-correct (on M) if, for all ν ∈ M,
Pν (̂ıτ ̸= i⋆(µ)) ≤ δ.

Goal: a δ-correct algorithm with small sample complexity Eν [τ ]
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3 approaches to Best Arm Identification

Uniform sampling + Eliminations
Successive Eliminations [Even-Dar et al., 2006]

Adaptive sampling based on Confidence Intervals
LUCB [Kalyanakrishnan et al., 2012], UGapE [Gabillon et al., 2012] ...

Lower Bound Inspired Algorithms
e.g., [Garivier and Kaufmann, 2016, Degenne et al., 2019, Jourdan et al., 2022]

All algorithms rely on

Nk(t) :=
t∑

s=1

1(At = k), µ̂k(t) :=
1

Nk(t)

t∑
s=1

Yk,s

where (Yk,s) are the successive observations from arm k
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LUCB: Lower and Upper Confidence Bounds

Ik(t) = [LCBk(t),UCBk(t)].

0

1

771 459 200 45 48 23

At round t, draw

Bt = argmax
b∈[K ]

µ̂b(t)

Ct = argmax
c ̸=Bt

UCBc(t)

Stop at round t if

LCBBt (t) > UCBCt (t)

Theorem [Kalyanakrishnan et al., 2012]

For well-chosen confidence intervals, Pν(Bτ = i⋆(µ)) ≥ 1− δ and

E [τδ] = O
([

K∑
a=1

1

∆a
2

]
ln

(
1

δ

))
∆k =

{
µ⋆ − µk , k ̸= i⋆
mini ̸=i⋆ ∆i , k = i⋆
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A Sample Complexity Lower Bound

Lower Bound [Garivier and Kaufmann, 2016]

For δ-correct algorithms for Gaussian bandits of variance σ2,

Eµ[τ ] ≥ T⋆(µ) log

(
1

3δ

)
where

(T⋆(µ))
−1 = sup

w∈∆K

inf
λ∈Alt(i⋆(µ))

∑
a∈[K ]

wa
(µa − λa)

2

2σ2

with

∆K = {w ∈ [0, 1]K :
∑
a

wa = 1}

Alt(i) = {λ ∈ RK : i⋆(λ) ̸= i}.
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A Sample Complexity Lower Bound

The “minimal distance” has a closed form:

inf
λ∈Alt(i⋆(µ))

∑
a∈[K ]

wa
(µa − λa)

2

2σ2
= min

a ̸=i⋆

(µa − µi⋆)
2

2σ2
(

1
wa

+ 1
wi⋆

)
but not the characteristic time

(T⋆(µ))
−1 = sup

w∈∆K

min
a ̸=i⋆

(µa − µi⋆)
2

2σ2
(

1
wa

+ 1
wi⋆

)
Approximation of the characteristic time

K∑
a=1

2σ2

∆2
a

≤ T⋆(µ) ≤ 2

(
K∑

a=1

2σ2

∆2
a

)

➜ Can we still match this (non-explicit) lower bound?
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Track-and-Stop

(T⋆(µ))
−1 = sup

w∈∆K

min
a ̸=i⋆

(µa − µi⋆)
2

2σ2
(

1
wa

+ 1
wi⋆

)
Yes, with an appropriate stopping rule

τ = inf

t ∈ N : min
a ̸=ı̂⋆t

(µ̂a(t)− µ̂ı̂⋆t (t))
2

2σ2

(
1

Na(t)
+ 1

Nı̂⋆t
(t)

) > β(t, δ)


where ı̂⋆t is the empirical best arm at time t
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(T⋆(µ))
−1 = sup

w∈∆K

min
a ̸=i⋆

(µa − µi⋆)
2

2σ2
(

1
wa

+ 1
wi⋆

)
Yes, with an appropriate GLR stopping rule

τ = inf

t ∈ N : min
a ̸=ı̂⋆t

(µ̂a(t)− µ̂ı̂⋆t (t))
2

2σ2

(
1

Na(t)
+ 1

Nı̂⋆t
(t)

) > β(t, δ)


where ı̂⋆t is the empirical best arm at time t

➜ Generalized Likelihood Ratio Statistic for testing

H0 : (i⋆(µ) ̸= ı̂t) against H1 : (i⋆(µ) = ı̂t)
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Track-and-Stop

(T⋆(µ))
−1 = sup

w∈∆K

min
a ̸=i⋆

(µa − µi⋆)
2

2σ2
(

1
wa

+ 1
wi⋆

)
Yes, with an appropriate GLR stopping rule

τ = inf

t ∈ N : min
a ̸=ı̂⋆t

(µ̂a(t)− µ̂ı̂⋆t (t))
2

2σ2

(
1

Na(t)
+ 1

Nı̂⋆t
(t)

) > β(t, δ)


where ı̂⋆t is the empirical best arm at time t
... and a sampling rule satisfying(

N1(t)

t
, . . . ,

NK (t)

t

)
→ w⋆(µ)

where w⋆(µ) is the maximizer in w ∈ ∆K
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Track-and-Stop

Tracking sampling rule: letting Ut =
{
a : Na(t) <

√
t
}
,

At+1 ∈


argmin
a∈Ut

Na(t) if Ut ̸= ∅ (forced exploration)

argmax
1≤a≤K

[
w⋆
a (µ̂(t))− Na(t)

t

]
(tracking)

Theorem [Garivier and Kaufmann, 2016, Kaufmann and Koolen, 2021]

The Track-and-Stop strategy, that uses

the Tracking sampling rule

the GLR stopping rule with β(t, δ) ≃ log
(
K log(t)

δ

)
and recommends ı̂t = i⋆(µ̂(t))

is δ-correct for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]

ln(1/δ)
= T ⋆(µ).
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Back to Pareto Set Identification

µ = (µ1, . . . ,µK ) ∈ (RD)K

S⋆(µ) = {k ∈ [K ] : µk ∈ P(µ1, . . . ,µK )}

Pareto Set Identification algorithm:

a sampling rule At ∈ [K ] : what is the next arm to explore?

➜ get a new observation Xt ∼ νAt∈ RD

a recommendation rule Ŝt : a guess for S⋆(µ)

a stopping rule τ : when to stop the data collection?

Definition

An algorithm is δ-correct if, for all ν, Pν(Ŝτ ̸= S⋆(µ)) ≤ δ.

Goal: a δ-correct algorithm with small sample complexity Eν [τ ]
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A non-dominance measure

x ⊀ y ⇔ ∃ d , xd ≥ yd ,

⇔ ∃ d , xd − yd ≥ 0,

⇔ max
d∈[D]

(xd − yd)︸ ︷︷ ︸
:=M(x ,y)

> 0,

Interpretation: The larger
M(x , y) the “further” y is from
dominating x

M(i , j) := M(µi ,µj)
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Confidence Regions on M(i , j)

µ̂k(t) ∈ RD the empirical mean vector of arm k at time t

M(i , j ; t) = M(µ̂i (t), µ̂j(t))

Confidence bonus for µk

βk (t) ≃
√

2σ2 log

(
K log(Nk (t))

δ

)
1

Nk (t)

and for µi − µj

βi,j (t) ≃
√

2σ2 log

(
K2 log(Nk (t))

δ

)(
1

Ni (t)
+

1

Nj (t)

)

Lemma

With probability 1− δ, for all i , j , t,

M(i , j) ≥ M−(i , j ; t) := M(i , j ; t)− βi ,j(t)

M(i , j) ≤ M+(i , j ; t) := M(i , j ; t) + βi ,j(t)
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Adaptive Pareto Exploration

OPT(t) := {i ∈ [K ] : ∀j ∈ [K ]\{i},M−(i , j ; t) > 0}

Two interesting arms to explore:

a potentially Pareto optimal arm

Bt = argmax
i∈[K ]\OPT(t)

min
j ̸=i

M+(i , j ; t)

the arm that is the closest to potentially dominate it

Ct := argmin
j ̸=Bt

M−(Bt , j ; t)

Adaptive Pareto Exploration (APE)

selects the least sampled among these two candidate arms:
At+1 = argmina∈{Bt ,Ct} Na(t)
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Stopping rule

Letting Ŝ(t) = P⋆(µ̂1(t), . . . , µ̂K (t)), the algorithm stops and
recommends Ŝt = Ŝ(t) when

all arms in Ŝ(t) are confidently non-dominated:

Z1(t) := min
i∈Ŝ(t)

min
j ̸=i

M−(i , j ; t) > 0

all arms in (Ŝ(t))c are confidently dominated:

Z2(t) := min
i /∈Ŝ(t)

max
j ̸=i

[
−M+(i , j ; t)

]
> 0

Stopping rule for (exact) PSI

τ = inf
{
t ∈ N : Z1(t) > 0,Z2(t) > 0

}
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Sample complexity bound

Theorem [Kone et al., 2023]

Assume the observations are bounded in [0, 1]D . Then, with
probability larger than 1− δ, APE with the stopping rule τδ
outputs Ŝτ = S⋆(µ) and satisfies

τδ ≤
K∑

a=1

32

∆a
2
log

(
2KD

δ
log

(
32

∆a
2

))
,

for an appropriate notion of “Pareto gap”.

➜ same scaling as the bound of [Auer et al., 2016] for an
elimination-based algorithm, with better constants and a
log log(1/∆) versus log(1/∆)



24/34

APE for relaxed PSI

APE can further be combined with different stopping rules to
tackle different relaxations of PSI, e.g. min(τ, τk) where

τk = inf{t ∈ N : |OPT(t)| ≥ k}

to identify at most k Pareto optimal arms.

Theorem [Kone et al., 2023]

Assume the observations are bounded in [0, 1]D . Then, with
probability larger than 1− δ, APE with the stopping rule τδ ∧ τk

outputs Ŝτ = P⋆(µ) and satisfies

τδ ≤
K∑

a=1

32

∆̃2
a

log

(
2KD

δ
log

(
32

∆̃2
a

))
,

for a relaxation ∆̃a = max(∆a, ωk).
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Numerical results

APE[k=1] APE[k=2*] APE[k=3] APE[k=20] PSI-Unif-Elim
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(Log) Empirical sample complexity of APE (with a k-relaxation) compared to the

algorithm of [Auer et al., 2016] on simulated CovBoost data [Munro et al., 2021]

improved practical performance

the k-relaxation (provably) reduces the sample complexity
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Optimality?

For arms that are multi-variate Gaussian (known covariance Σ),
could we further try to match the lower bound?

Eµ[τδ] ≥ T ⋆(µ) log

(
1

3δ

)

T ⋆(µ)−1 = sup
w∈∆K

inf
λ∈Alt(S⋆(µ))

(
K∑

k=1

wkKL(N (µa,Σ),N (λa,Σ))

)
.

where Alt(S) = {λ ∈ (RD)K : S⋆(λ) ̸= S}.

➜ The structure of the alternative is complex for PSI, making
even the computation of “minimal distance” challenging...
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Computing the Minimal Distance

there are many ways to alter the Pareto set

no closed-form is known for the minimal distance

(1) : w 7→ inf
λ∈Alt(S⋆(µ))

∑
k

wk

2
∥µk − λk∥2Σ−1

for Σ = σ2Id , (1) can be computed by solving O(K |S⋆(µ)|d)
separably convex problems [Crepon et al., 2024]
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Track-And-Stop?

The GLR stopping rule

τ = inf

{
t ∈ N : inf

λ∈Alt(Ŝ(t))

K∑
k=1

Nk(t)

2
∥µ̂k(t)− λk∥2Σ−1 > β(t, δ)

}

is already computationally expansive due to the minimal distance.

The Tracking sampling rule is intractable as it further computes

w⋆(µ) = argmax
w∈∆K

inf
λ∈Alt(S⋆(µ))

∑
k

wk

2
∥µk − λk∥2Σ−1

➜ existing alternative approaches based on online learning
[Ménard, 2019, Degenne et al., 2019] also rely on minimal
distance computation.
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A Fully Sampling-Based Approach

Posterior Sampling for PSI (PSIPS) (simplified)

For all m ≤ M(t, δ), sample θ̃m = (θ̃m
1 , . . . , θ̃

m
K ) with

θ̃m
a ∼ N

(
µ̂a(t),

c(t, δ)

Na(t)
Σ

)
If for all m, S⋆(θ̃m) = S⋆(µ̂(t)), stop and return
Ŝt = S⋆(µ̂(t))

Else, take the first m such that S⋆(θ̃m) ̸= S⋆(µ̂(t))
Update an online learning algorithm on ∆K with the gain

gt(w) =
K∑

a=1

wa
1

2
∥µ̂a(t)− θ̃m

a ∥2Σ−1

to get wt . Select arm At ∼ (1− γt)wt + γtwexp

[Kone et al., 2025], inspired by PEPS [Li et al., 2024]
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Theory: Sample Complexity

Sample complexity

Using budget M and inflation c such that

lim sup
δ→0

c(t, δ) logM(t, δ)

log(1/δ)
≤ 1,

PSIPS satisfies

lim sup
δ→0

Eµ[τPS]

log(1/δ)
≤ T⋆(µ)

Rationale. the truncated prosterior density is close to

qt(λ) ∝ exp

(
−
∑
k

Nt,k ∥µk − λk∥2Σ−1

)
· 1λ∈Alt(St)

∝ qt−1(λ) · exp
(
−∥µAt − λAt∥2Σ−1

)
which mirrors the behavior of the continuous Exponential Weights
algorithm under quadratic loss.
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lim sup
δ→0

Eµ[τPS]

log(1/δ)
≤ T⋆(µ)

Rationale. the truncated prosterior density is close to

qt(λ) ∝ exp

(
−
∑
k

Nt,k ∥µk − λk∥2Σ−1

)
· 1λ∈Alt(St)

∝ qt−1(λ) · exp
(
−∥µAt − λAt∥2Σ−1

)
which mirrors the behavior of the continuous Exponential Weights
algorithm under quadratic loss.
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Theory: Correctness

The calibration of the PS stopping rule is not as easy as the GLR:
it requires a lower bound on

Πt(Alt(St)
c) when St ̸= S⋆

and thus some anti-concentration results.

Lemma

For PSIPS to be δ-correct we can choose

c(t, δ) ≃ log(log(t)/δ)

log(1/δ)
and M(t, δ) ≃ log(t/δ)

δ
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Practice

CovBoost (d = 3) for δ = 0.1 (left) and δ = 0.01 (right)
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Random Gaussian instances with K = 10 for d ∈ {3, 4, 5, 6}
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Conclusion

We proposed two approaches to Pareto Set Identification in the
Fixed Confidence Setting:

Adaptive Pareto Exploration: finite time bound, sub-optimal
in the asymptotic regime δ → 0

PSIPS, a (tractable !) Lower Bound Inspired algorithm,
optimal in the asymptotic regime

➜ which one should we use in practise?

The sampling-based stopping rule is an interesting alternative to
the GLR stopping rule for any complex pure exploration problem

Perspective: multi-objective bandit algorithms always sample all
the marginals of the chosen arm → can we also adaptively select
which marginals to observe?
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The Pareto gaps

[Auer et al., 2016]
For sub-optimal arms i /∈ S⋆(µ),

∆i := max
j∈S⋆

m(i , j), m(i , j) = −M(j , i)

while for optimal arms i ∈ S⋆, ∆i = min(δ+i , δ
−
i ) where

δ+i := min
j∈S⋆\{i}

min(M(i , j),M(j , i))

δ−i := min
j∈[K ]\S⋆

{[M(j , i)]+ +∆j}
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On the effect of correlation

We evaluate the performance of PSIPS on a 5-arm, 2-dimensional
Gaussian instance with correlated objectives.

Covariance matrix: Σρ with unit variances and correlation
ρ ∈ (−1, 1).

ρ = 0: objectives are independent.

ρ → +1 (resp. ρ → −1): strongly positively (resp. negatively)
correlated objectives.
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