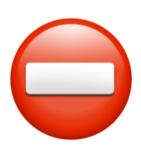
# Beyond Online-to-Batch: Exploring the Generalization Ability of (Convex) SGD

Tomer Koren
Tel Aviv University & Google

#### Disclaimer



No new (faster/better/...) algorithms

No new framework/model/setting

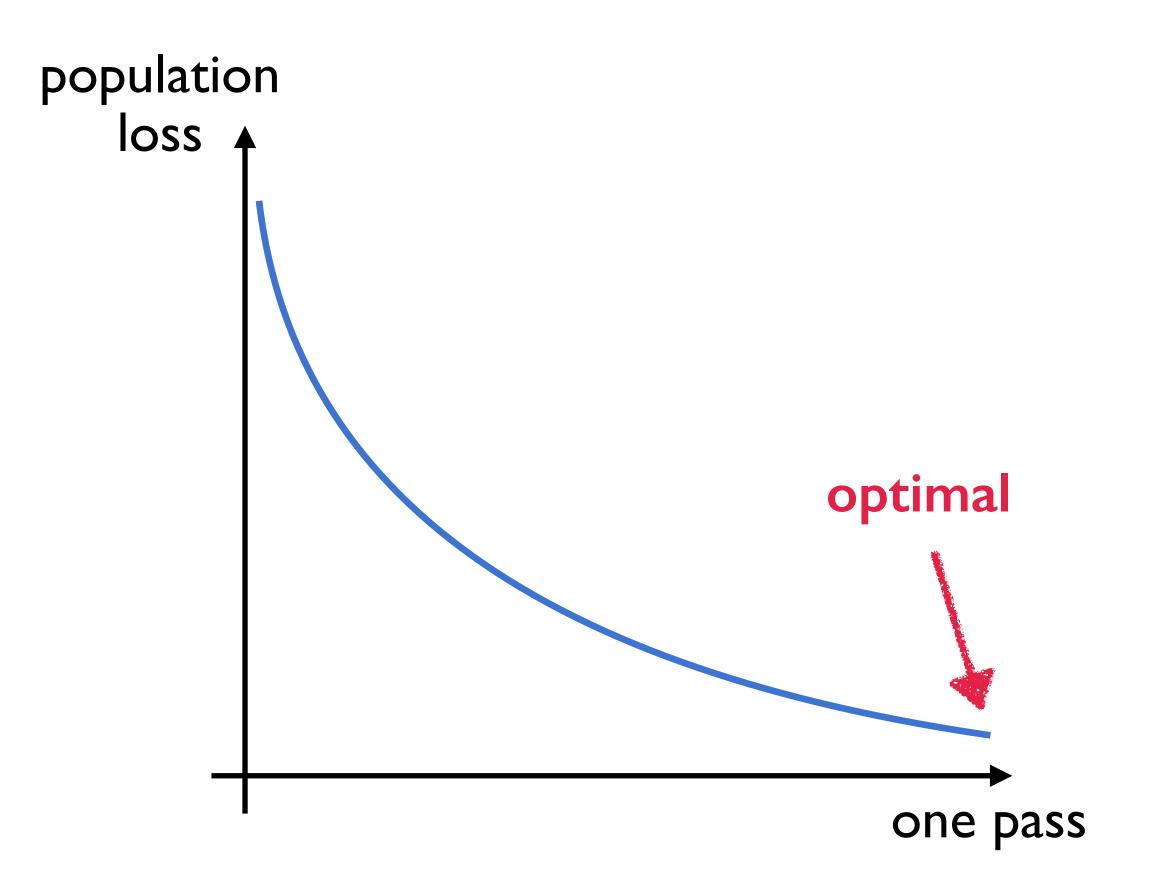


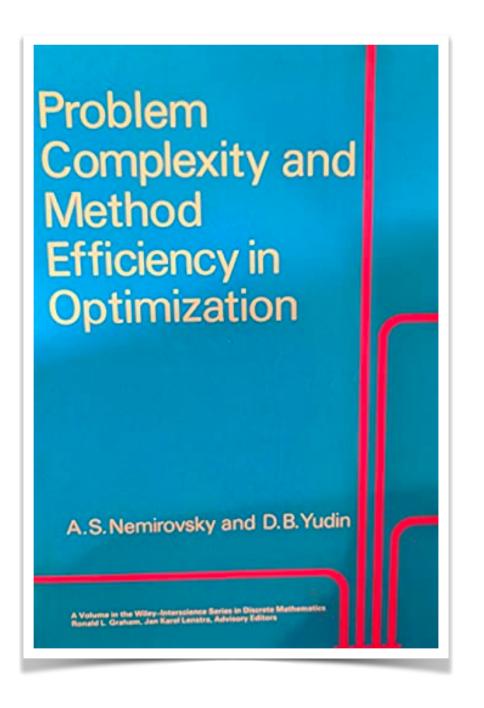
new aspects, perspectives, discoveries about already great algorithms in an already great setting

#### Outline

Revisit a fundamental result, from statistical learning perspective:

out-of-sample performance of SGD is minimax optimal in convex optimization





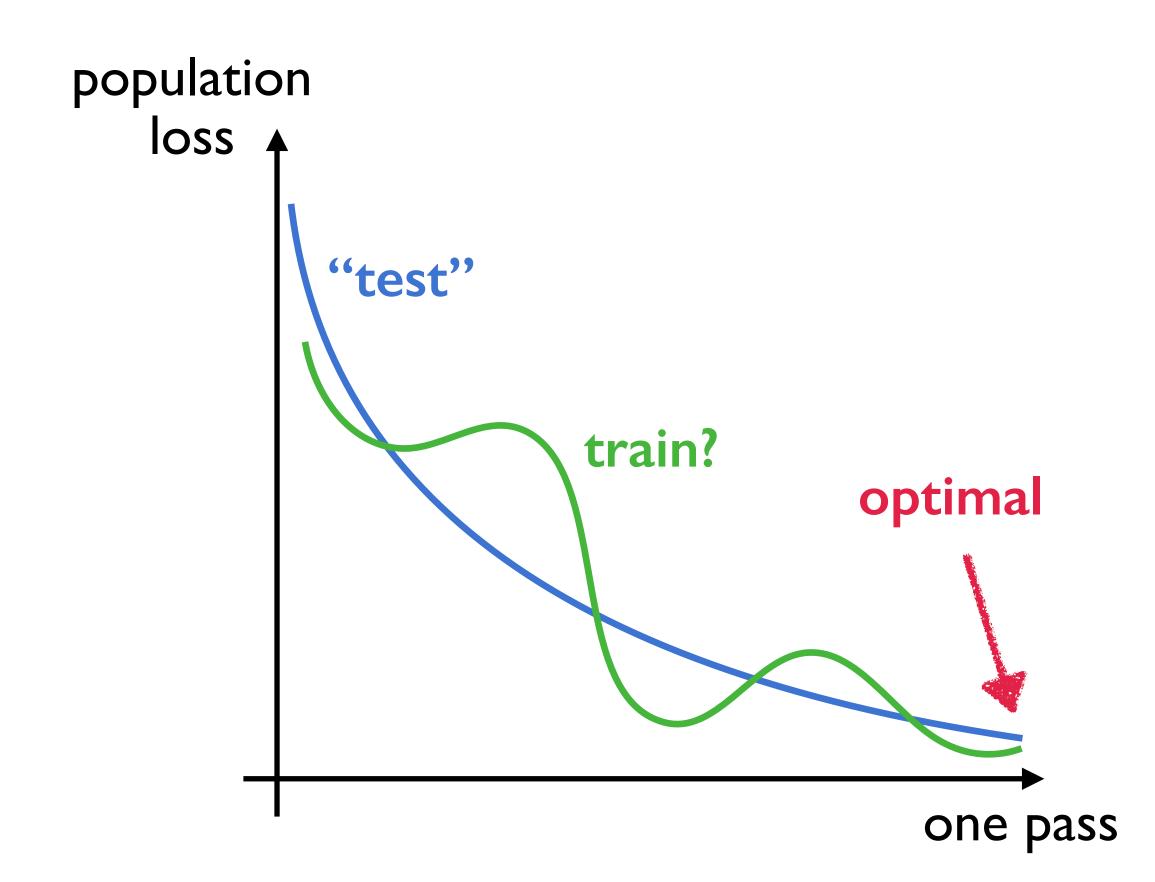
[Nemirovsky & Yudin '83]

modern view: direct consequence of regret + online-to-batch conversion

#### Outline

Revisit a fundamental result, from statistical learning perspective:

out-of-sample performance of SGD is minimax optimal in convex optimization

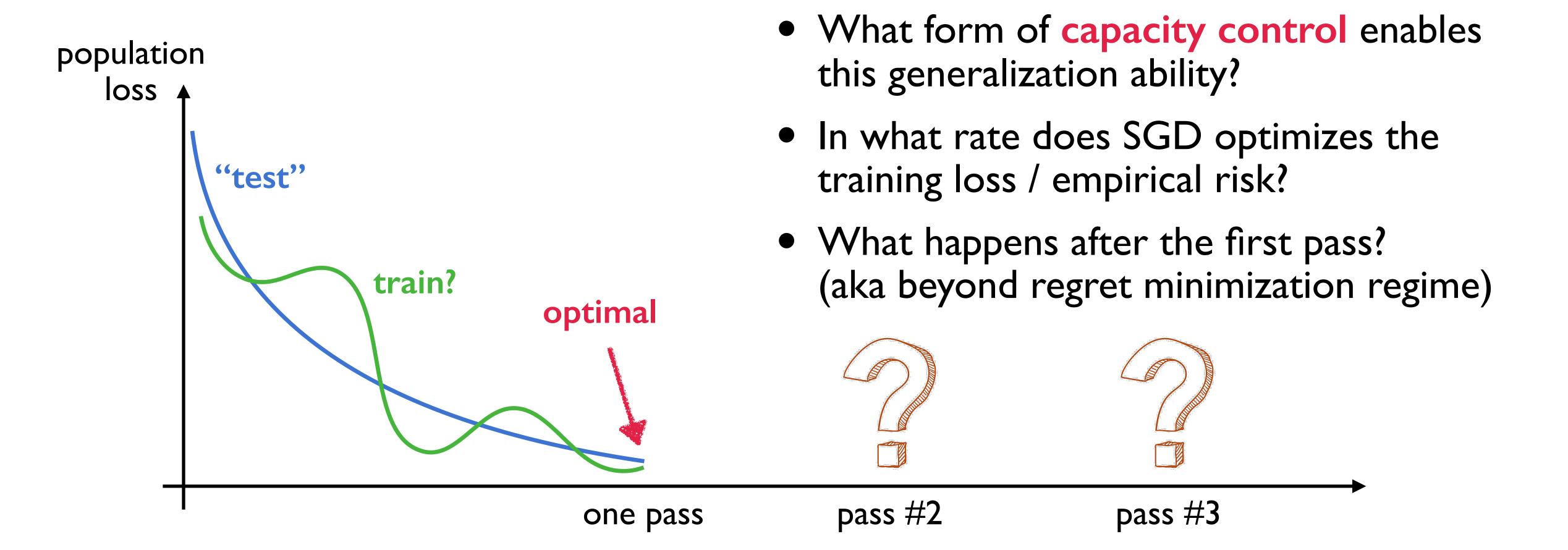


- What form of capacity control enables this generalization ability?
- In what rate does SGD optimizes the training loss / empirical risk?

#### Outline

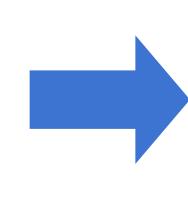
Revisit a fundamental result, from statistical learning perspective:

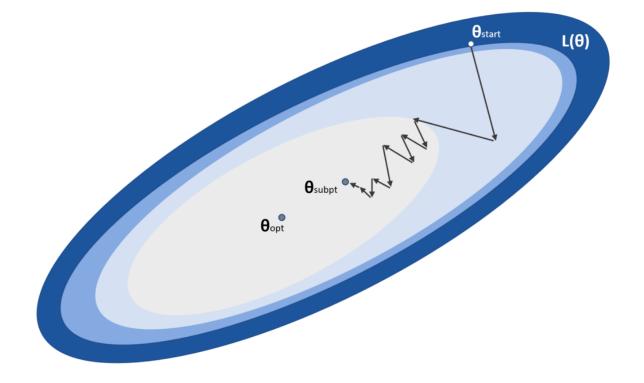
out-of-sample performance of SGD is minimax optimal in convex optimization

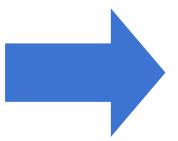


#### Generalization











Data samples

 $z_1, \ldots, z_n$ 

Optimization algorithm

Predictive model

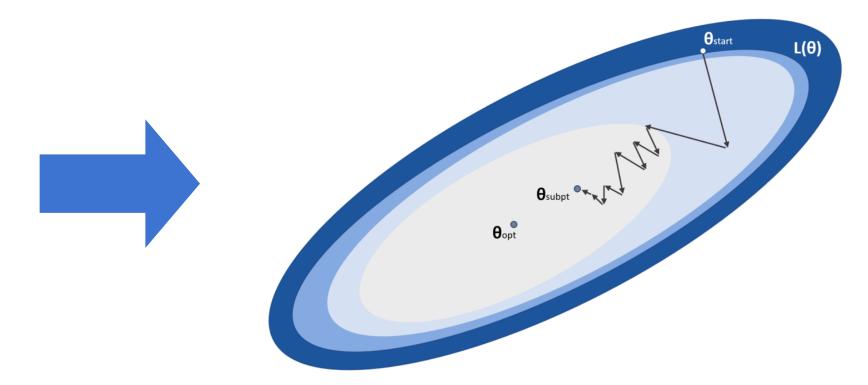
#### Generalization



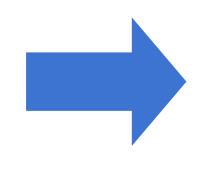


 $\hat{F}(w) = \frac{1}{n} \sum_{i=1}^{n} f(w, z_i)$ 

Empirical/training risk



Optimization algorithm



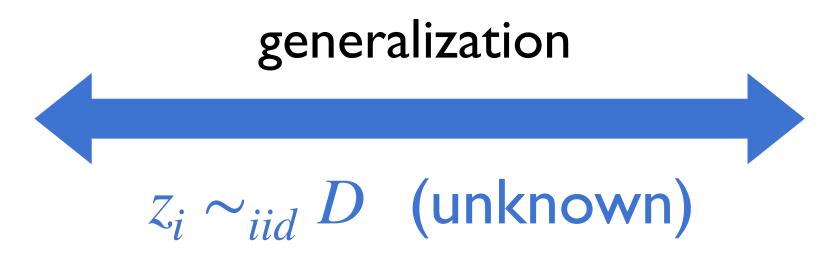


Predictive model

#### real goal

$$F(w) = \mathbb{E}_{z \sim D} [f(w, z)]$$

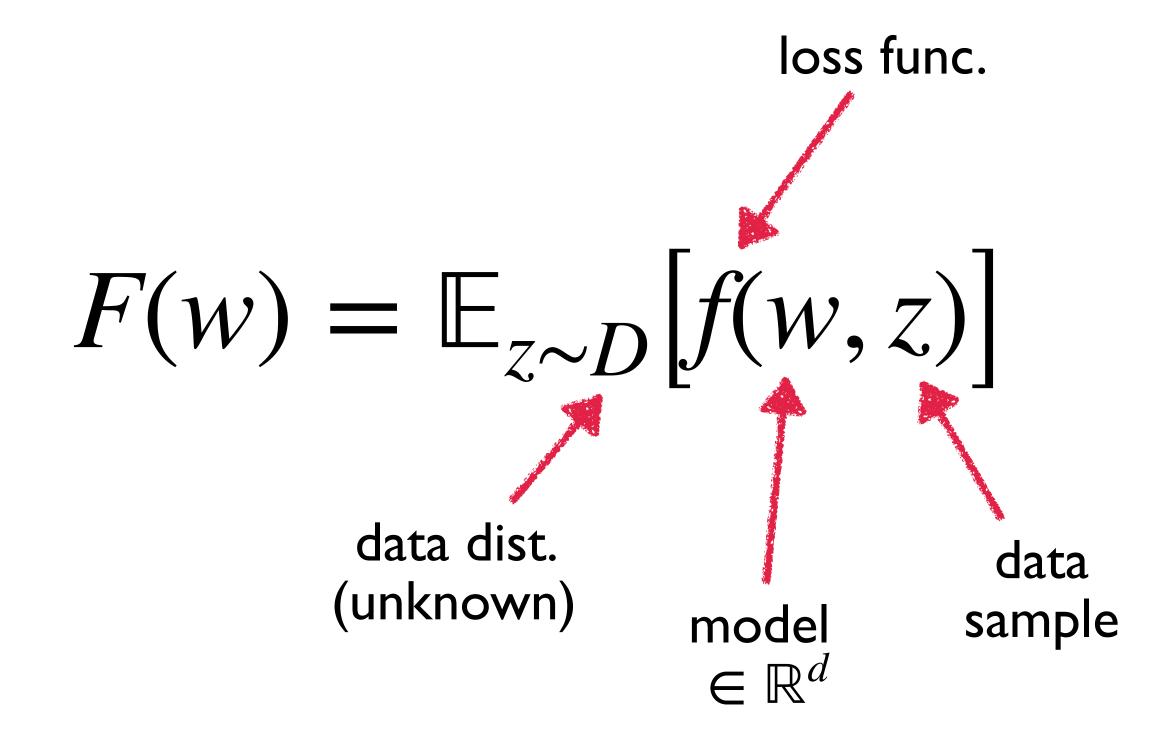
True/population risk



# Setup: Stochastic Convex Optimization (SCO)

- Convex, I-Lipschitz loss f(w, z)
- Goal: minimize population/true risk:

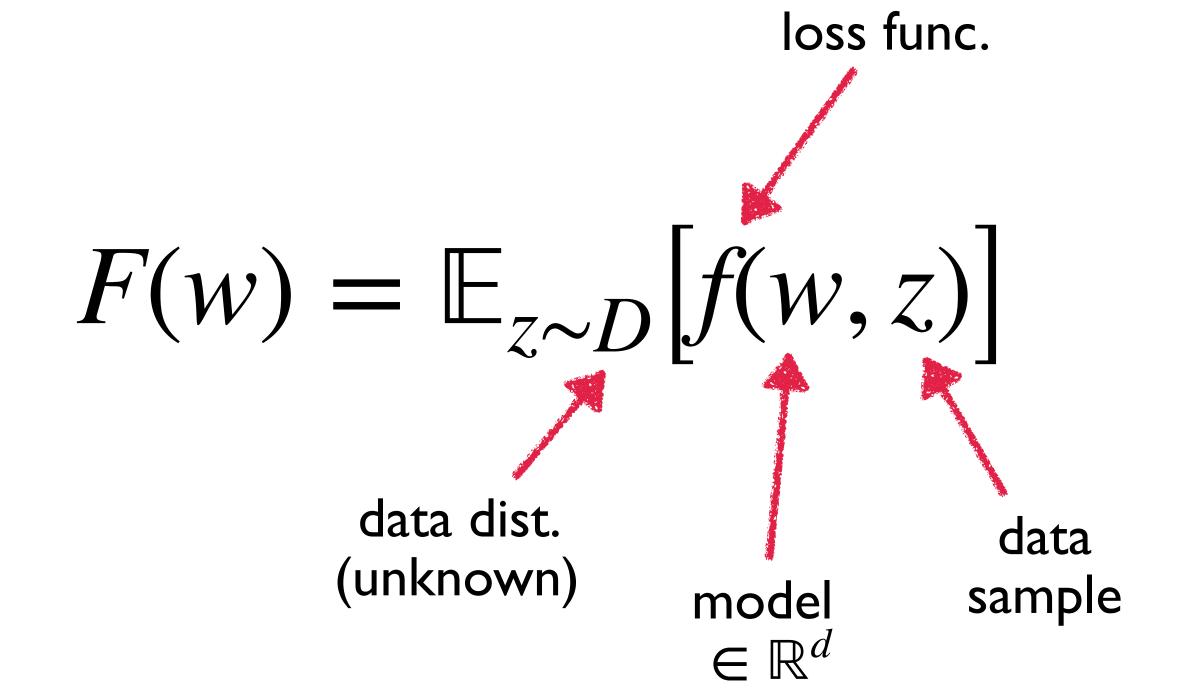
• Access to sample  $S = \{z_1, ..., z_n\} \sim_{iid} D$ 



# Setup: Stochastic Convex Optimization (SCO)

- Convex, I-Lipschitz loss f(w, z)
- Goal: minimize population/true risk:

• Access to sample  $S = \{z_1, ..., z_n\} \sim_{iid} D$ 



Empirical risk:

$$\hat{F}(w) = \frac{1}{n} \sum_{i=1}^{n} f(w, z_i)$$

• Generalization gap:

$$\Delta(w) = \hat{F}(w) - F(w)$$

## Generalization in SCO is (still) compelling

• Fundamental in optimization, extremely well studied

• Home to common, real-world algorithms (incl. SGD)

Global optimization is "easy"—allows isolating generalization



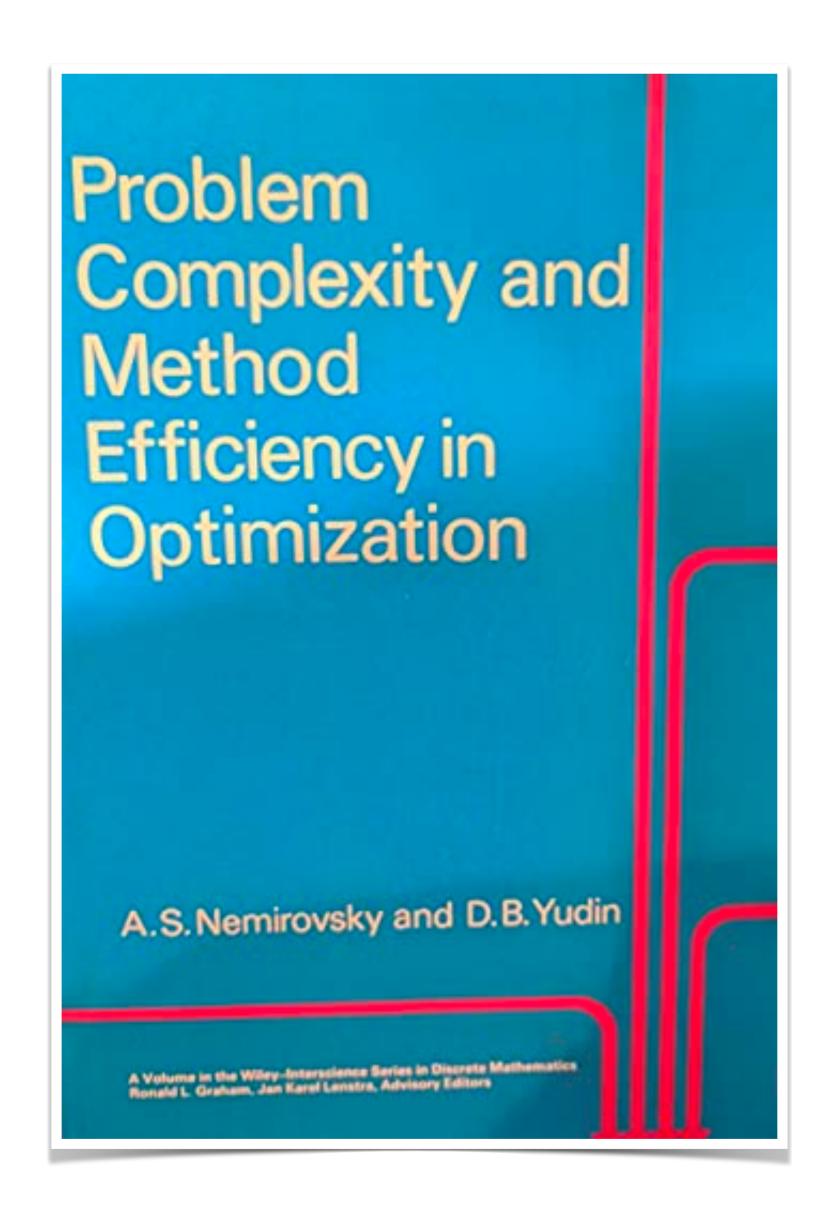
## Generalization in SCO is (still) compelling

- Fundamental in optimization, extremely well studied
- Home to common, real-world algorithms (incl. SGD)
- Global optimization is "easy"—allows isolating generalization

- Generalization in SCO known to be algorithm-dependent (unlike in other classical models: PAC, GLMs, ...)
   [Shalev-Shwartz, Shamir, Srebro, Sridharan '09]
- Instructive to demonstrate interesting (generalization)
   phenomena in simple cases



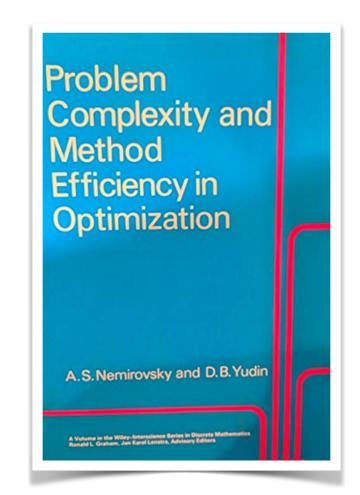
#### SGD is minimax optimal in SCO



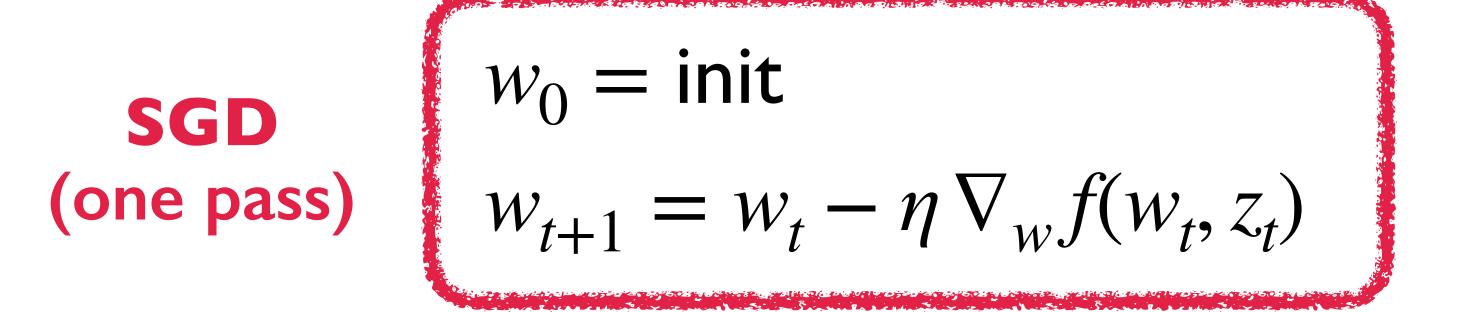
[Nemirovsky & Yudin '83]

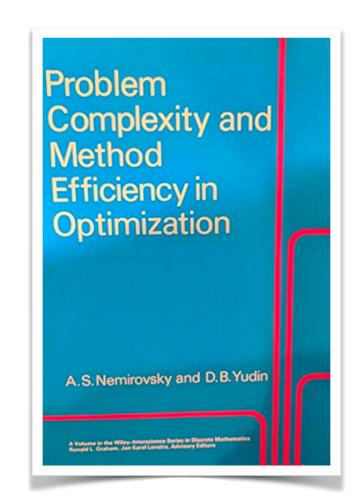
## SGD is minimax optimal in SCO

sgD 
$$w_0 = \text{init}$$
 (one pass) 
$$w_{t+1} = w_t - \eta \, \nabla_w f(w_t, z_t)$$



## SGD is minimax optimal in SCO





• Theorem: [N&Y '83]

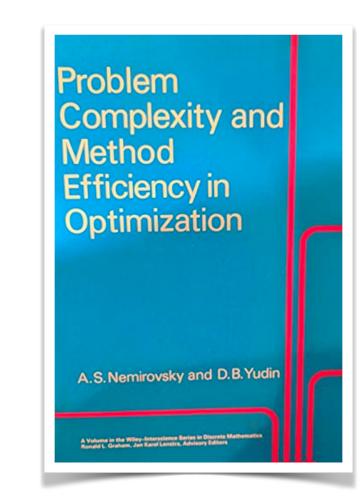
$$\mathbb{E}\big[F(\hat{w})\big] - F^{\star} \lesssim \frac{1}{\eta n} + \eta \lesssim \frac{1}{\sqrt{n}} \qquad (f \text{ convex , } G\text{-Lipschitz})$$

$$\hat{w} = \frac{1}{n} \sum_{t=1}^{n} w_{t} \qquad \eta \cong \frac{1}{\sqrt{n}}$$

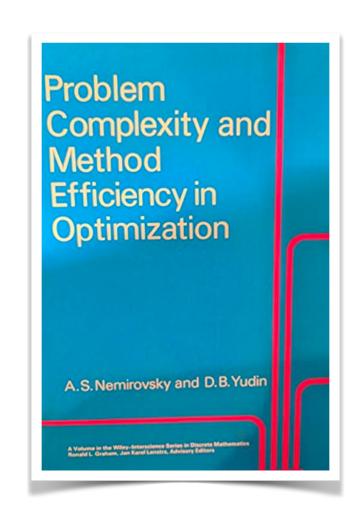
- Bound is minimax optimal up to constants, independent of dimension
- Modern view: consequence of regret + online-to-batch conversion
- Many extensions: other geometries (mirror descent), adaptive versions, ...

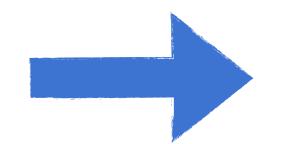
SGD 
$$w_{t+1} = w_t - \eta g_t$$
;  $\mathbb{E}[g_t \mid w_t] = \nabla F(w_t)$ 

 $g_t = \nabla_w f(w_t, z_t)$ 

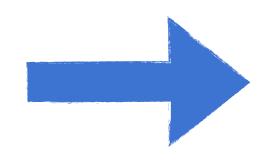


SGD 
$$w_{t+1} = w_t - \eta g_t$$
;  $\mathbb{E}[g_t \mid w_t] = \nabla F(w_t)$ 

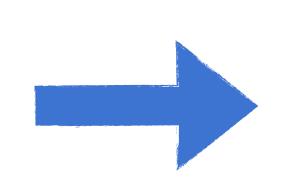




$$||w_{t+1} - w^*||^2 \le ||w_t - w^*||^2 - 2\eta g_t \cdot (w_t - w^*) + \eta^2 ||g_t||^2$$



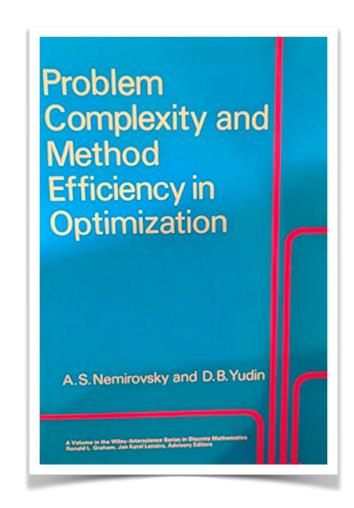
$$g_t \cdot (w_t - w^*) \le \frac{1}{2\eta} \left( \|w_t - w^*\|^2 - \|w_{t+1} - w^*\|^2 \right) + \frac{\eta}{2} G^2 \quad \left( \|g_t\| \le G \right)$$



$$\frac{1}{n} \sum_{t=1}^{n} g_t \cdot (w_t - w^*) \le \frac{1}{2\eta n} ||w_1 - w^*||^2 + \frac{\eta}{2} G^2$$

(online gradient descent regret bound)

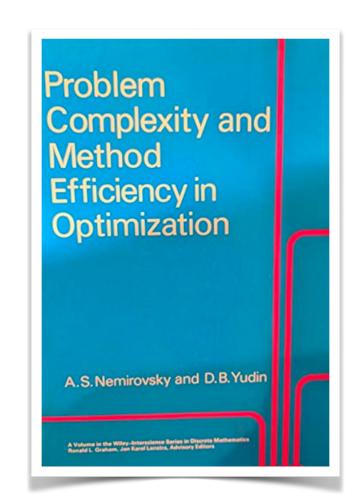
SGD 
$$w_{t+1} = w_t - \eta g_t$$
;  $\mathbb{E}[g_t \mid w_t] = \nabla F(w_t)$ 



$$\frac{1}{n} \sum_{t=1}^{n} g_t \cdot (w_t - w^*) \le \frac{1}{2\eta n} \|w_1 - w^*\|^2 + \frac{\eta}{2} G^2 \cong \frac{O(1)}{\sqrt{n}} \qquad \text{for } \eta \cong \frac{1}{\sqrt{n}}$$

for 
$$\eta \cong \frac{1}{\sqrt{n}}$$

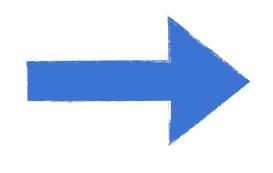
SGD 
$$w_{t+1} = w_t - \eta g_t$$
;  $\mathbb{E}[g_t \mid w_t] = \nabla F(w_t)$ 



$$\frac{1}{n} \sum_{t=1}^{n} g_t \cdot (w_t - w^*) \le \frac{1}{2\eta n} \|w_1 - w^*\|^2 + \frac{\eta}{2} G^2 \cong \frac{O(1)}{\sqrt{n}} \qquad \text{for } \eta \cong \frac{1}{\sqrt{n}}$$

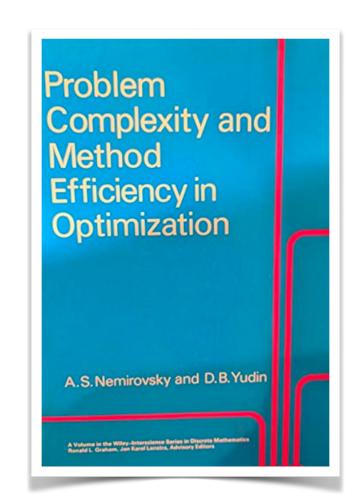
for 
$$\eta \cong \frac{1}{\sqrt{n}}$$

$$\mathbb{E}\left[\frac{1}{n}\sum_{t=1}^{n}g_{t}\cdot(w_{t}-w^{*})\right] = \frac{1}{n}\sum_{t=1}^{n}\mathbb{E}\left[\nabla F(w_{t})\cdot(w_{t}-w^{*})\right] \geq \frac{1}{n}\sum_{t=1}^{n}\mathbb{E}\left[F(w_{t})-F(w^{*})\right]$$



$$\mathbb{E}\left[F(\overline{w})\right] - F(w^*) \le \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[F(w_t) - F(w^*)\right] \le \frac{O(1)}{\sqrt{n}}$$
$$\left(\overline{w} = \frac{1}{n} \sum_{t=1}^{n} w_t\right)$$

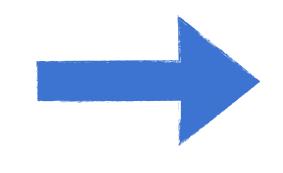
SGD 
$$w_{t+1} = w_t - \eta g_t$$
;  $\mathbb{E}[g_t \mid w_t] = \nabla F(w_t)$ 



$$\frac{1}{n} \sum_{t=1}^{n} g_t \cdot (w_t - w^*) \le \frac{1}{2\eta n} \|w_1 - w^*\|^2 + \frac{\eta}{2} G^2 \cong \frac{O(1)}{\sqrt{n}} \qquad \text{for } \eta \cong \frac{1}{\sqrt{n}}$$

for 
$$\eta \cong \frac{1}{\sqrt{n}}$$

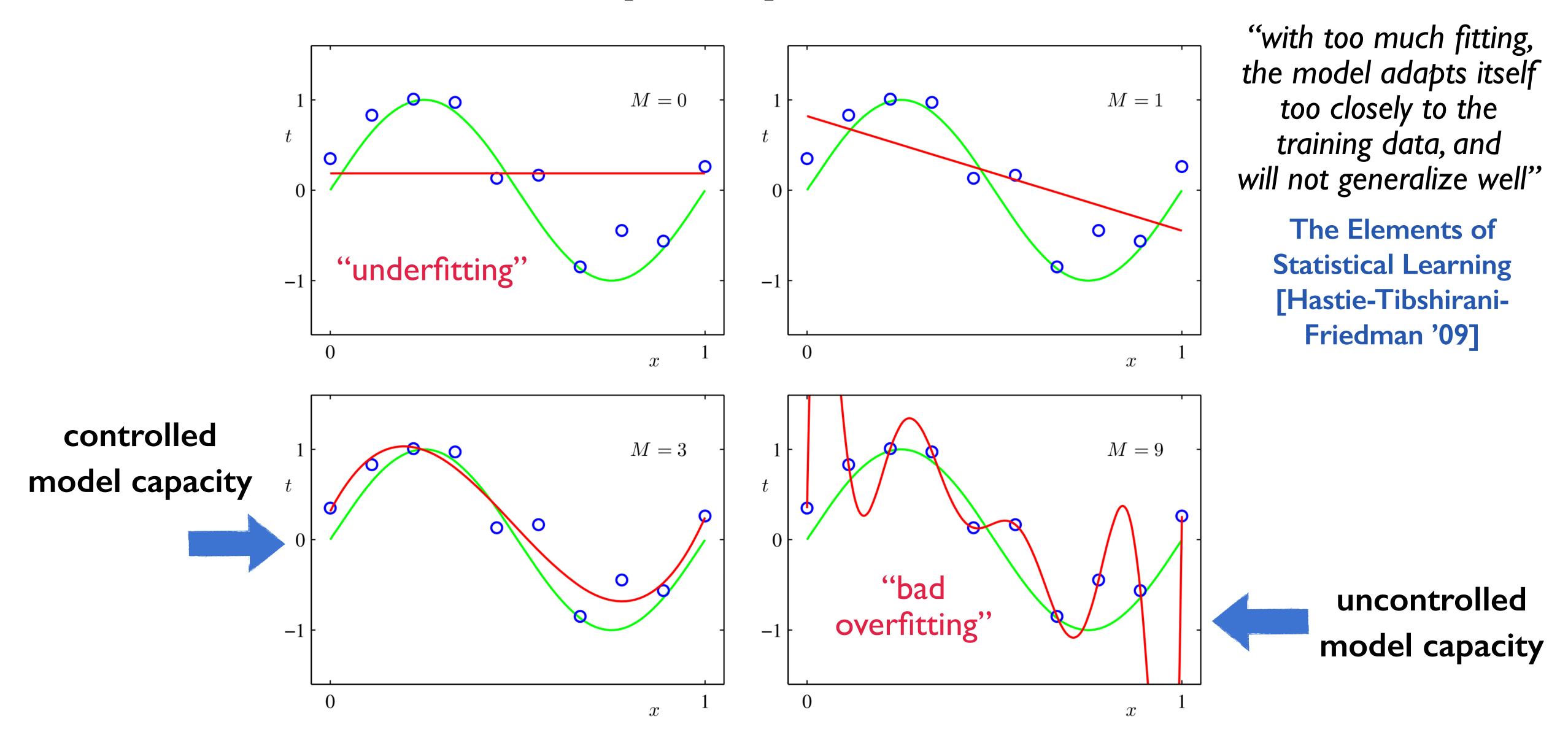
$$\mathbb{E}\left[\frac{1}{n}\sum_{t=1}^{n}g_{t}\cdot(w_{t}-w^{*})\right] = \frac{1}{n}\sum_{t=1}^{n}\mathbb{E}\left[\nabla F(w_{t})\cdot(w_{t}-w^{*})\right] \geq \frac{1}{n}\sum_{t=1}^{n}\mathbb{E}\left[F(w_{t})-F(w^{*})\right]$$



$$\mathbb{E}\left[F(\overline{w})\right] - F(w^*) \le \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[F(w_t) - F(w^*)\right] \lesssim \frac{O(1)}{\sqrt{n}}$$
$$\left(\overline{w} = \frac{1}{n} \sum_{t=1}^{n} w_t\right)$$

## What form of capacity control is at play?

#### Capacity control



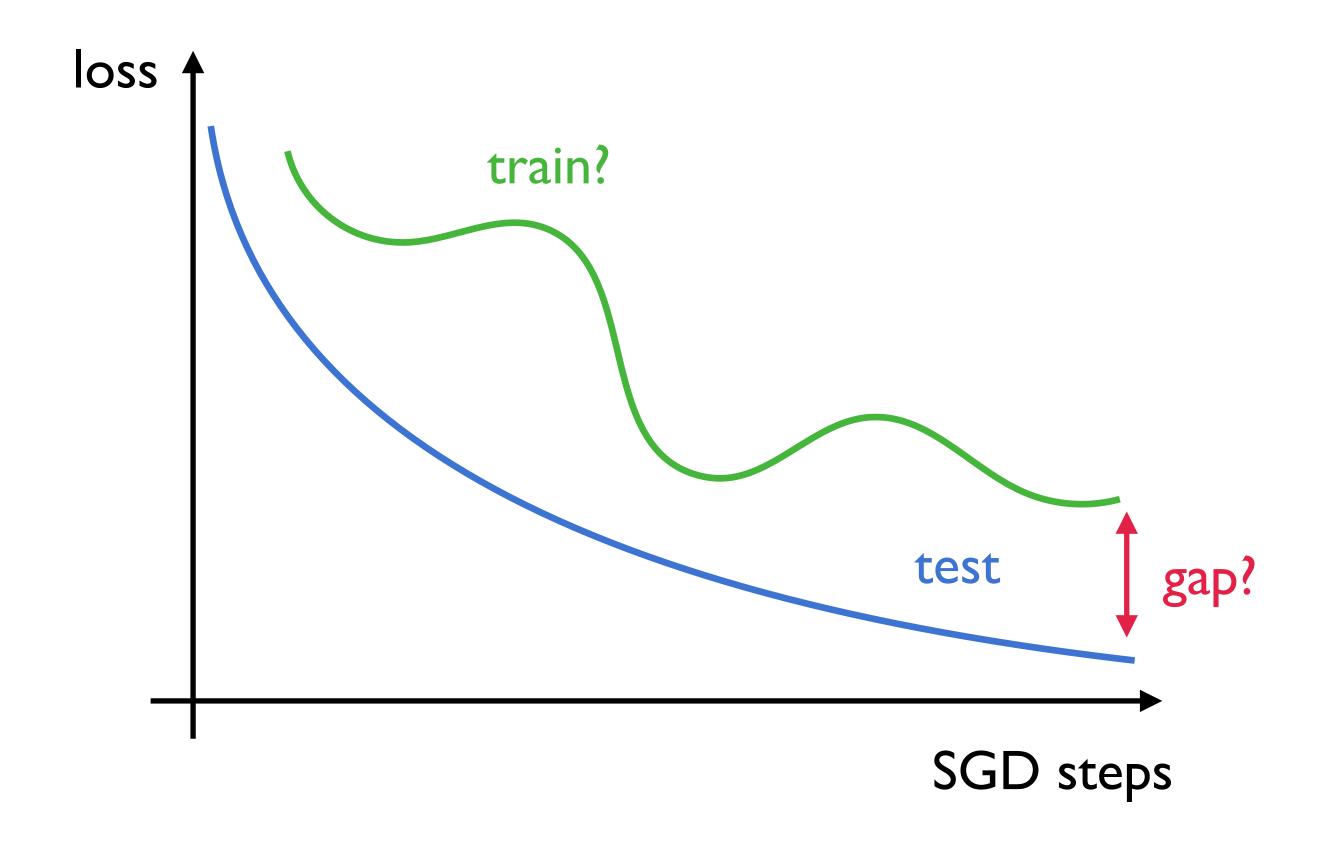
## Capacity control $\iff$ Generalization Bounds

```
test-error \leq train-error + |generalization-gap| \mathbb{E}[F(\hat{w}) - F^{\star}] \leq \mathbb{E}[\hat{F}(\hat{w}) - \hat{F}^{\star}] + |\mathbb{E}F(\hat{w}) - \mathbb{E}\hat{F}(\hat{w})| \leftarrow \text{capacity control}
```

- VC / Rademacher bounds [Vapnik '71, Valiant '84, Bartlett et al. '02, ...]
- Algorithmic stability [Bousquet & Elisseeff '02, Hardt et al. '16, ...]
- PAC-Bayes [McAllester '99; Dziugaite and Roy '18, ...]
- Sample compression [Littlestone & Warmuth '86; Arora et al. '18, ...]
- Information-theoretic bounds [Xu & Raginsky '17, Neu '21, ...]
- ...
- More recently: Implicit bias, interpolating algorithms, benign overfitting, ...

"Laws of Large Numbers approach"

#### SGD's generalization gap?



test-error 
$$\leq$$
 |train-error| + |gen-gap|  $O(1/\sqrt{n})$  ?

#### (one pass) SGD

## SGD doesn't generalize

$$\begin{aligned} w_{t+1} &= \Pi_W[w_t - \eta \nabla f(w_t, z_t)] \\ \hat{w} &= \frac{1}{n} \sum_{t=1}^{n} w_t \end{aligned}$$

Theorem:  $\exists$  dist. D and convex, I-Lipschitz loss f(w,z) over  $W = \{\text{unit ball in } \mathbb{R}^d\}$  in dim  $d = \tilde{\Theta}(n)$  s.t. for SGD "from the book" (one pass,  $\eta \cong 1/\sqrt{n}$ ):

I. True risk is (optimally) small:

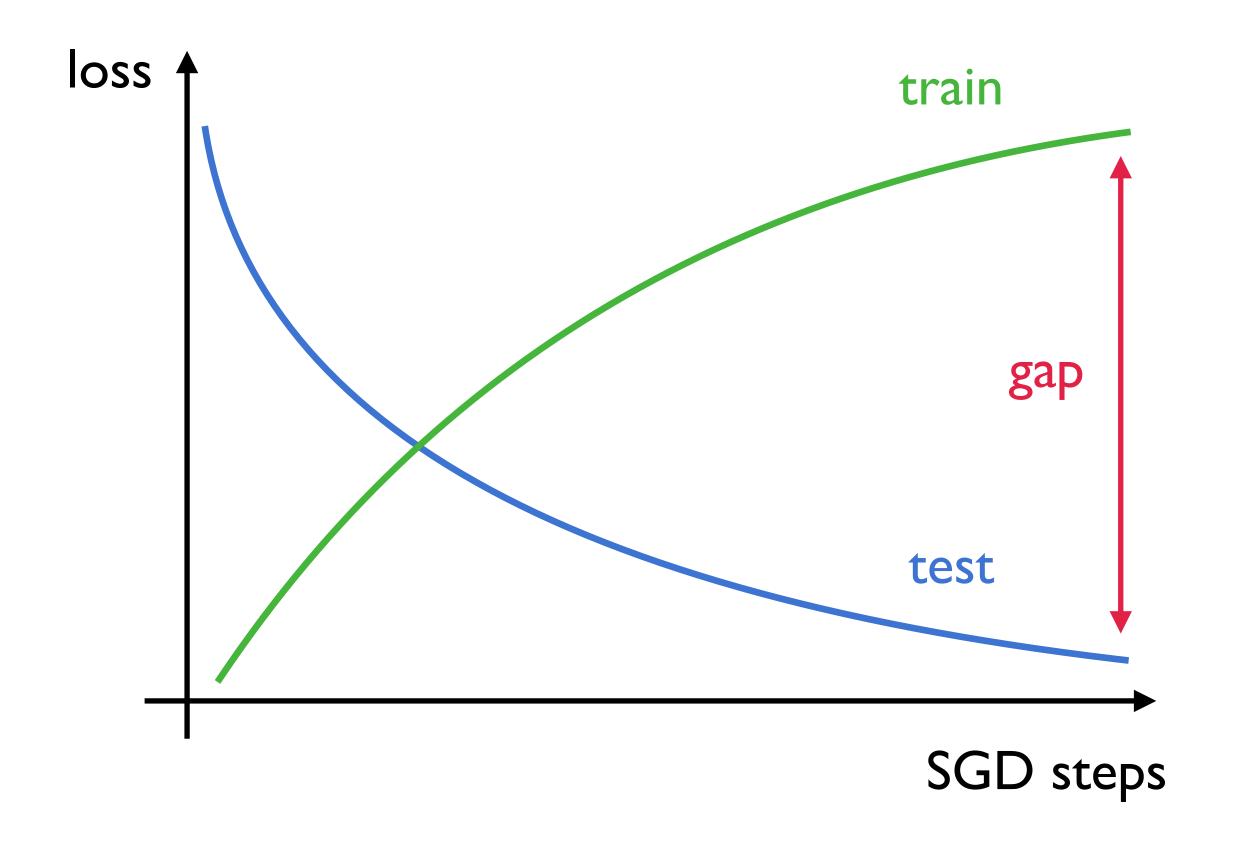
 $\mathbb{E}\left[F(\hat{w}) - F^{\star}\right] \lesssim \frac{1}{\sqrt{n}} \quad \text{[N&Y '83]}$ 

- 2. Empirical risk is (trivially) large:
- $\mathbb{E}\left[\hat{F}(\hat{w}) \hat{F}^{\star}\right] \gtrsim 1$

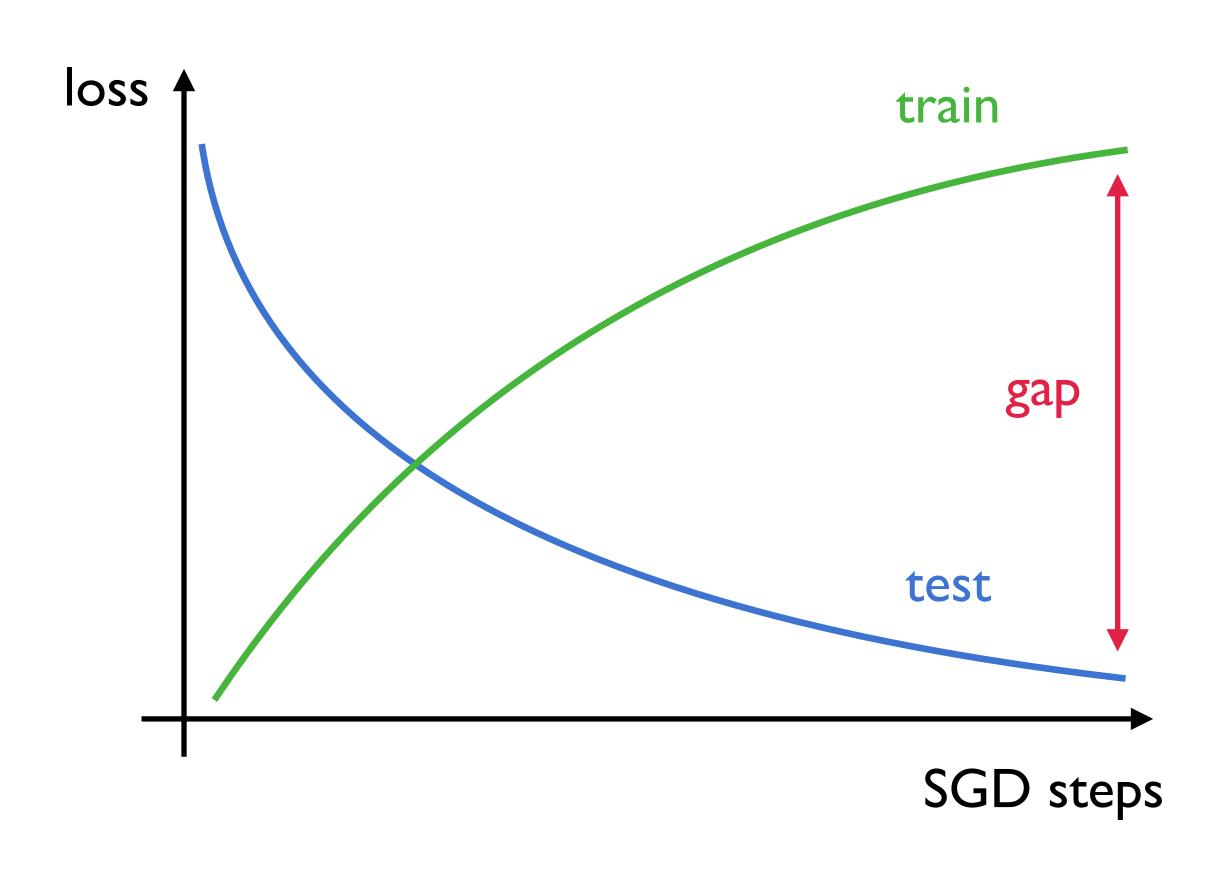
3. Gen-gap is (trivially) large:

 $\mathbb{E}\left[\hat{F}(\hat{w}) - F(\hat{w})\right] \gtrsim 1$ 

• K, Livni, Mansour, Sherman '22; Schliserman, Sherman, K '25; Vansover-Hager, K, Livni '25

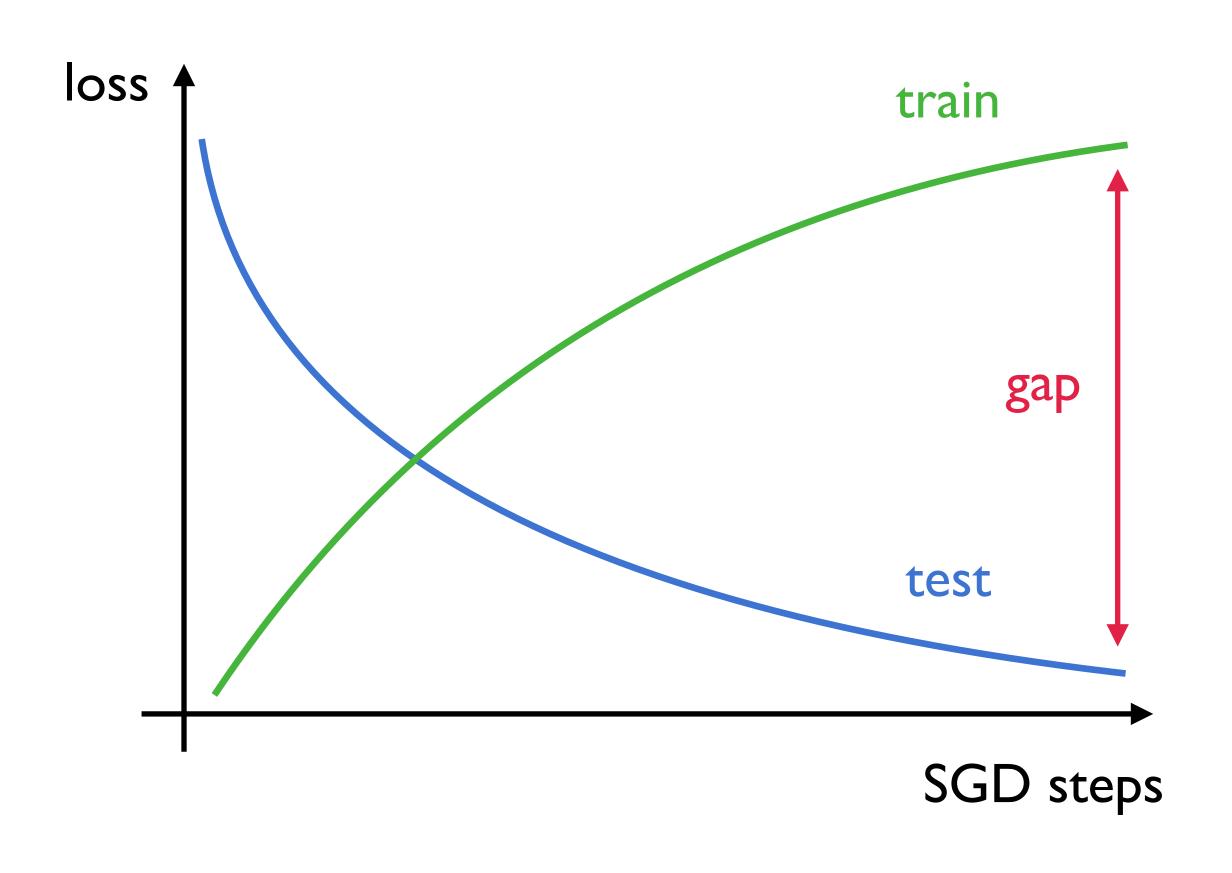


test-error 
$$\leq$$
 |train-error| + |gen-gap|  $O(1/\sqrt{n})$   $\Omega(1)$   $\Omega(1)$ 



- "Laws of Large Numbers approach" fails for SGD
- Even in most basic, fundamental setup (convex optimization)

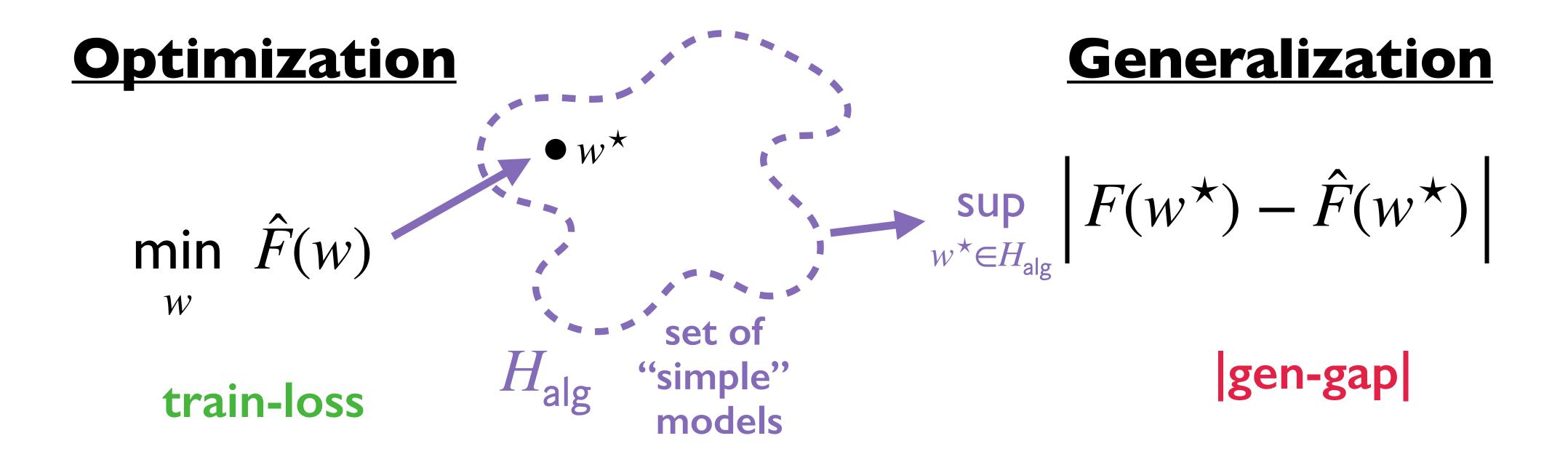
test-error 
$$\leq$$
 |train-error| + |gen-gap|  $O(1/\sqrt{n})$   $\Omega(1)$   $\Omega(1)$ 



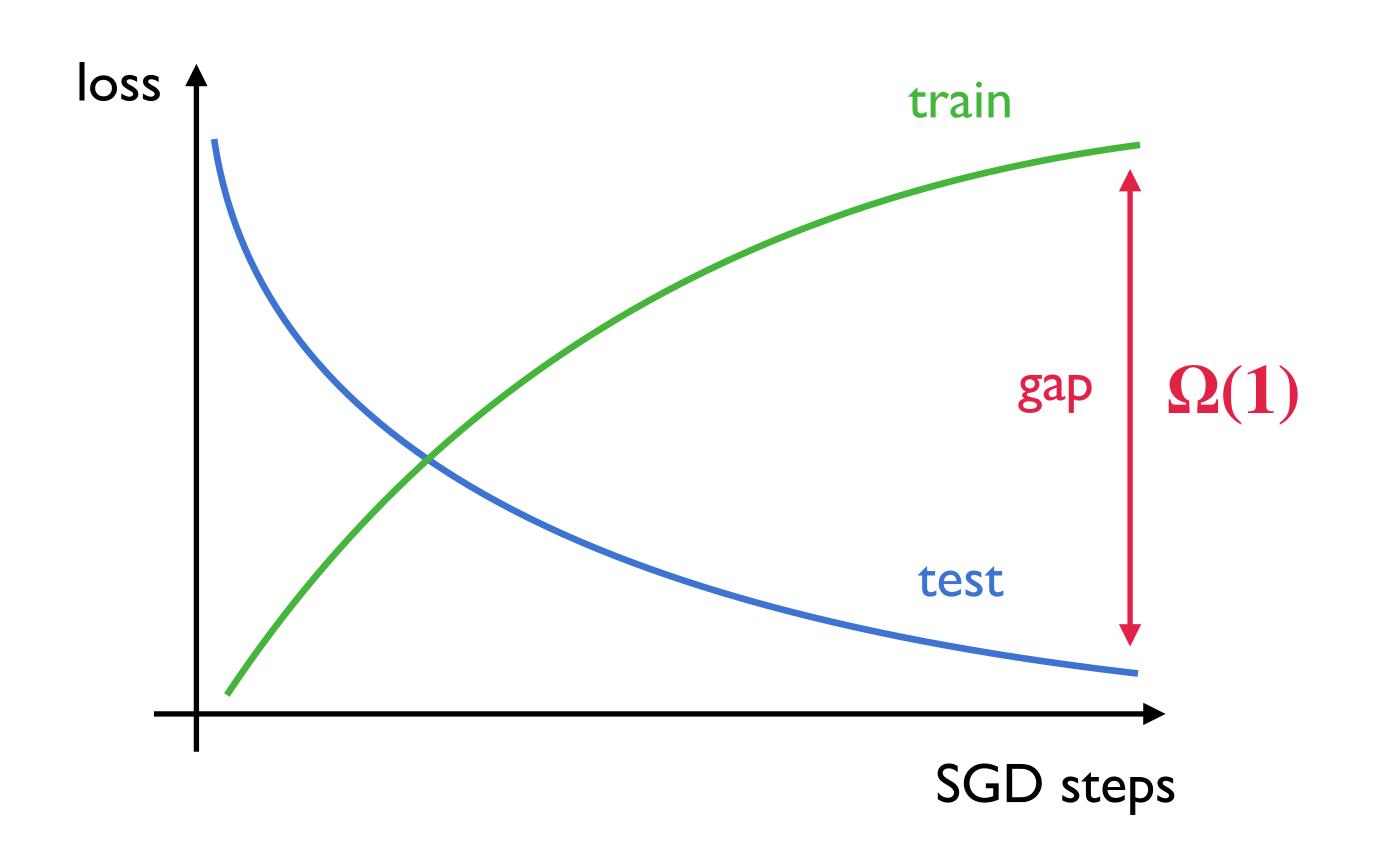
- "Laws of Large Numbers approach" fails for SGD
- Even in most basic, fundamental setup (convex optimization)

- Out-of-sample performance (only?)
   explained by stochastic approx. /
   regret analysis
- No (effective) "implicit bias"
- test-error  $\leq$  | train-error | + | gen-gap |  $O(1/\sqrt{n})$   $\Omega(1)$   $\Omega(1)$

## Contemporary wisdom: "Implicit bias"



- Modern belief: common optimization algorithms are implicitly biased towards "simple" models, thus generalize
- "Simple" is e.g.: low norm, sparse, low-rank, short MDL, ...



No implicit bias (for SGD in SCO)

$$F(w) - \hat{F}(w)$$

is large at SGD solution

## More generally

#### (one pass) SGD

$$w_{t+1} = \prod_{w} [w_t - \eta \nabla f(w_t, z_t)]$$

$$\hat{w} = \frac{1}{n} \sum_{t=1}^{n} w_t$$

Theorem:  $\forall n, \eta > 0$ ,  $\exists$  dist. D and convex, I-Lipschitz f(w, z)

over  $W = \{ \text{unit ball in } \mathbb{R}^d \}$  in  $\dim d = \tilde{\Theta}(n)$ 

s.t. for SGD with any  $\eta > 0$ :

I. Empirical risk is large:

$$\mathbb{E}\left[\hat{F}(\hat{w}) - \hat{F}^{\star}\right] \gtrsim \min\left\{\eta\sqrt{n} + \frac{1}{\eta\sqrt{n}}, 1\right\}$$

2. Gen-gap is large:

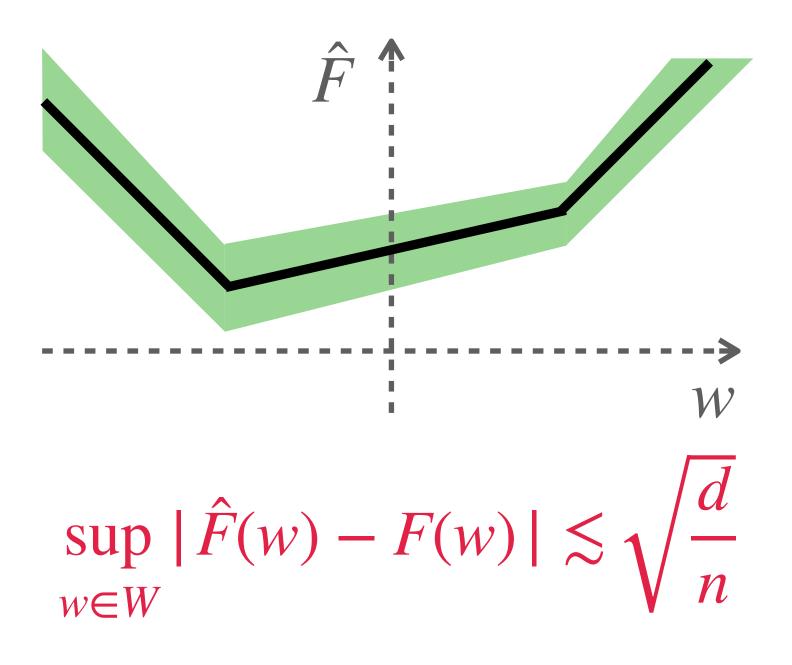
$$\mathbb{E}\big[\hat{F}(\hat{w}) - F(\hat{w})\big] \gtrsim \min\left\{\eta\sqrt{n} + \frac{1}{\eta\sqrt{n}}, 1\right\}$$

E.g. implies that gen-gap is trivially large unless  $n=\Omega(d)$ 

Dim dependence is ~optimal: when d = o(n) uniform convergence kicks in

#### Proof ideas

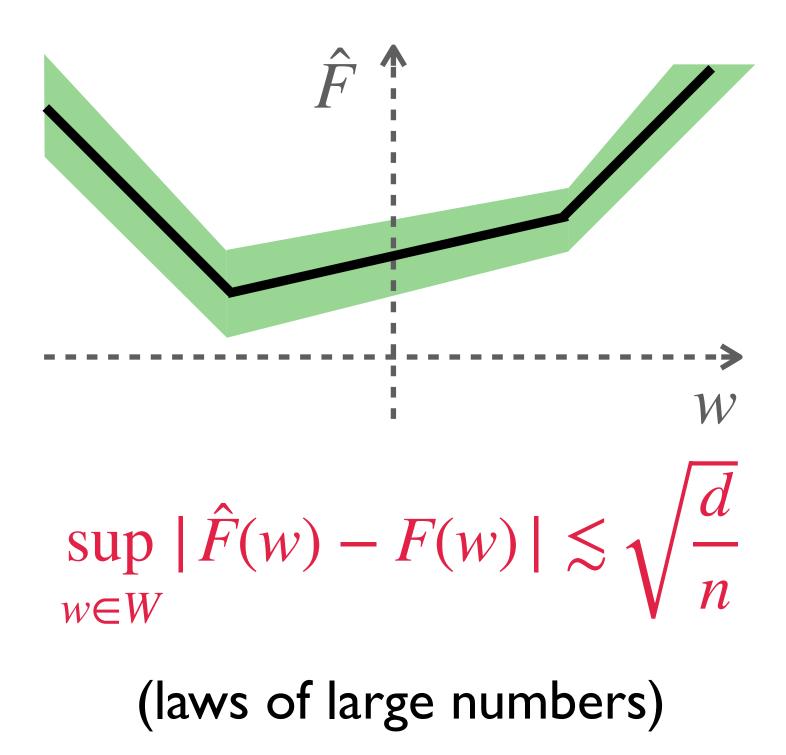
• Step #1: "turn off" uniform convergence



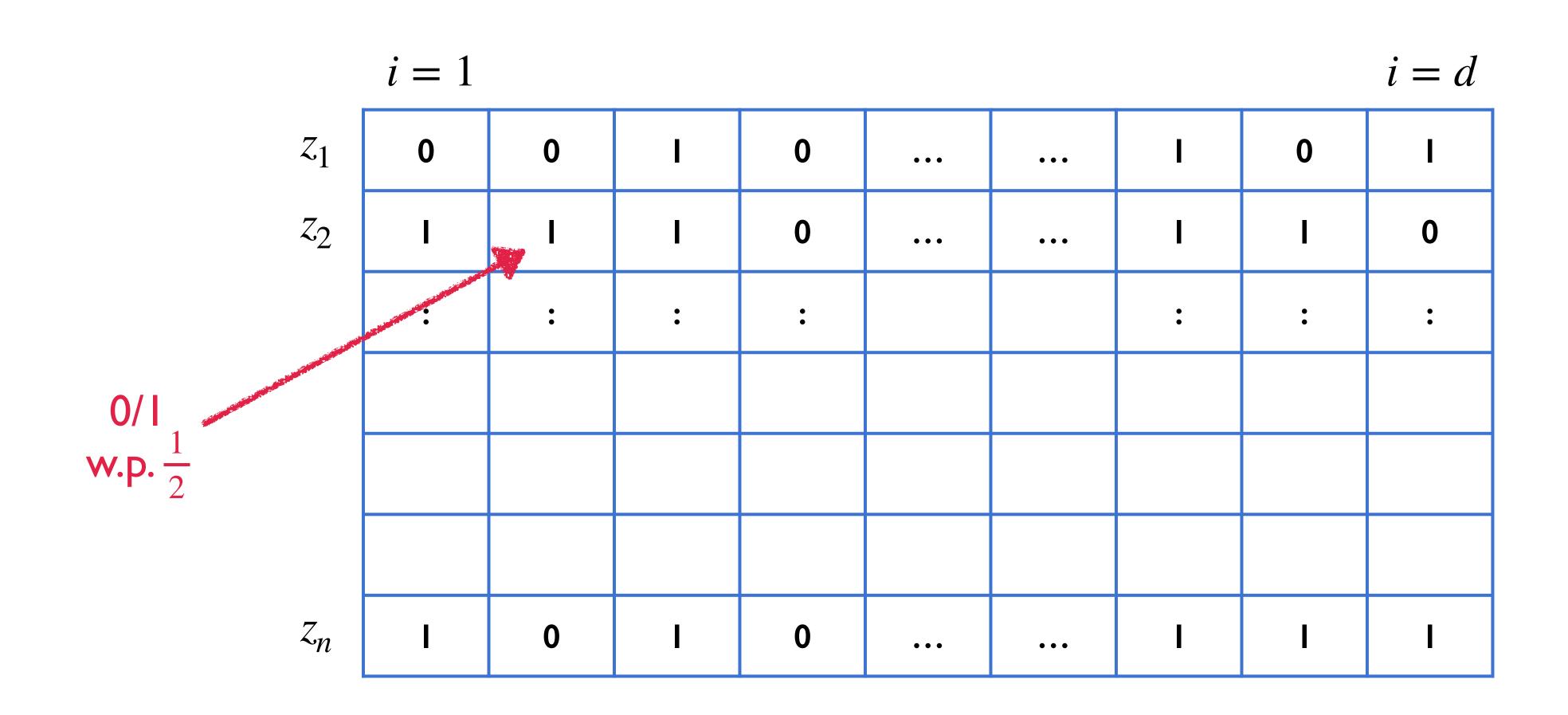
(laws of large numbers)

#### Proof ideas

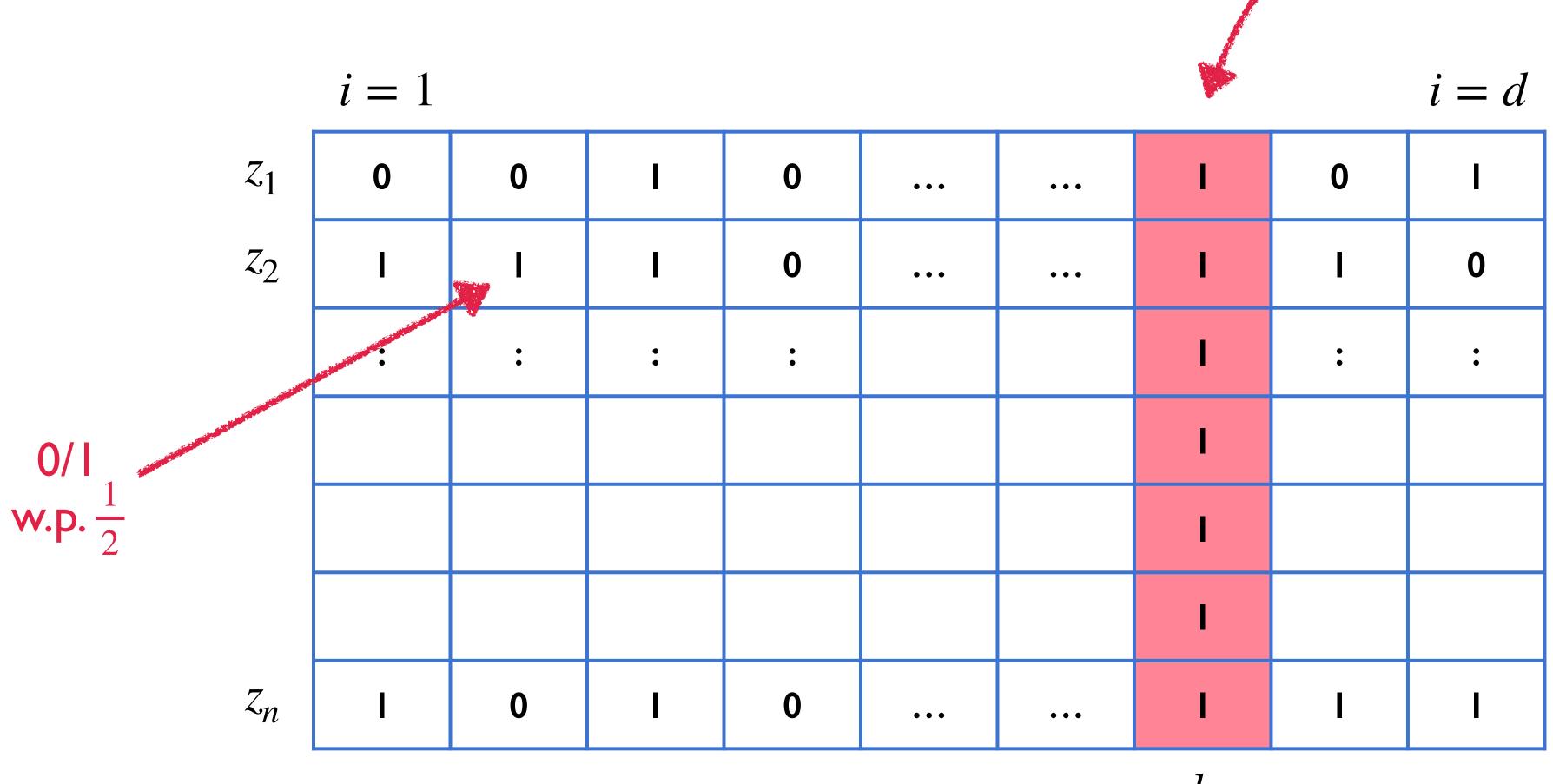
• Step #1: "turn off" uniform convergence



- ► UC rate is  $O(\sqrt{d/n})$ ⇒ work in dimension  $d = \Omega(n)$
- ► Show that  $\exists w^{\text{bad}} \in W$  with large generalization gap







k

| $z_1$ | 0 | 0 | I | 0 | • • • | • • • | I | 0 | I |
|-------|---|---|---|---|-------|-------|---|---|---|
| $z_2$ | I | I | I | 0 | • • • | • • • | I | I | 0 |
|       | • | • | • | • |       |       | I | • | • |
|       |   |   |   |   |       |       | I |   |   |
|       |   |   |   |   |       |       | I |   |   |
|       |   |   |   |   |       |       | I |   |   |
| $Z_n$ | I | 0 | I | 0 | • • • | • • • | I | I | I |
|       |   |   |   |   |       |       | k |   |   |

$$f(w,z) = \sum_{i=1}^{d} z(i)w^{2}(i)$$

convex, Lipschitz (over unit ball)

| $z_1$ | 0 | 0 | I | 0 | • • • | • • • | I | 0 | I |
|-------|---|---|---|---|-------|-------|---|---|---|
| $z_2$ | I | I | I | 0 | • • • | • • • | I | I | 0 |
|       | • | • | • | • |       |       | I | • | : |
|       |   |   |   |   |       |       | I |   |   |
|       |   |   |   |   |       |       | I |   |   |
|       |   |   |   |   |       |       | I |   |   |
| $Z_n$ | I | 0 | I | 0 | • • • | • • • | I | I | I |
| •     |   | k |   |   |       |       |   |   |   |

$$f(w,z) = \sum_{i=1}^{d} z(i)w^{2}(i)$$

convex, Lipschitz (over unit ball)

$$\hat{F}(e_k) = 1$$

## Turn off uniform convergence

| $z_1$ | 0                | 0 | I | 0 | • • • | • • • | I | 0 | I |
|-------|------------------|---|---|---|-------|-------|---|---|---|
| $z_2$ | l                | l | l | 0 | • • • | • • • | I | I | 0 |
|       | :                | • | • | : |       |       | I | • | : |
|       |                  |   |   |   |       |       | I |   |   |
|       |                  |   |   |   |       |       | I |   |   |
|       |                  |   |   |   |       |       | I |   |   |
| $Z_n$ | l                | 0 | l | 0 | • • • | • • • | I | I | I |
|       | $\boldsymbol{k}$ |   |   |   |       |       |   |   |   |

$$f(w,z) = \sum_{i=1}^{d} z(i)w^{2}(i)$$

convex, Lipschitz (over unit ball)

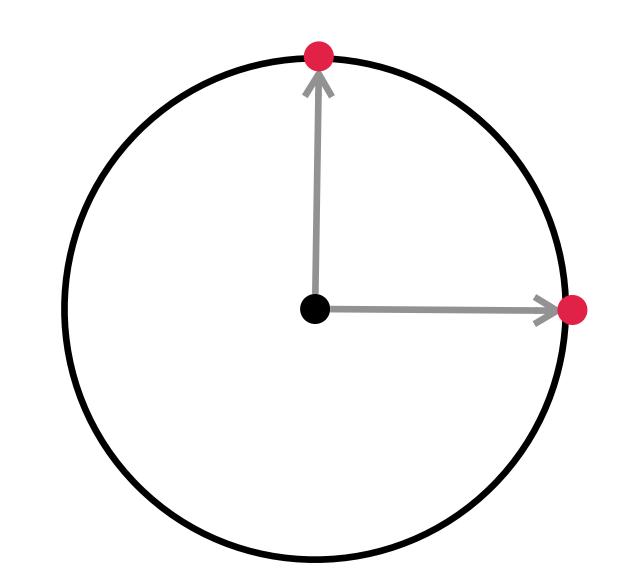
$$\hat{F}(e_{\nu}) = 1$$

$$F(e_k) = \frac{1}{2}$$



## Turn off uniform convergence

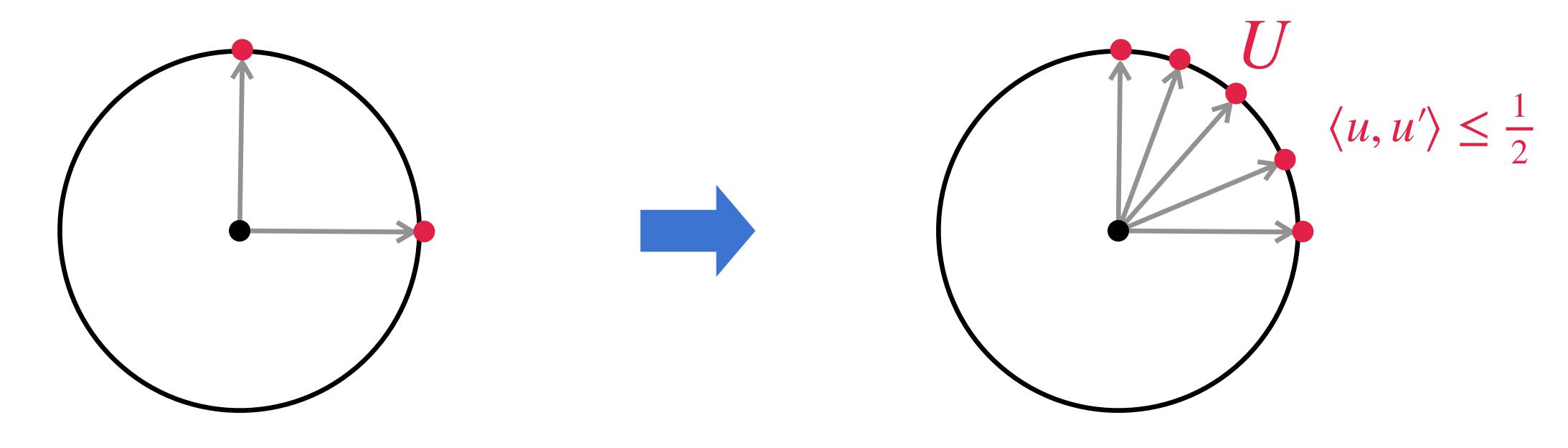
• Construction of f, D requires dimension  $d \ge 2^{\Theta(n)}...$ 



 $2^n$  orthogonal directions in  $d=2^n$ 

### Turn off uniform convergence

• Construction of f, D requires dimension  $d \ge 2^{\Theta(n)} \dots$ 



 $2^n$  orthogonal directions in  $d=2^n$ 

 $\exp(n)$  nearly orthogonal directions in d = O(n)

[Feldman '16]

• Step #2: "turn off" algorithmic stability

# Algorithmic stability [Bousquet & Elisseeff '02]

learning algorithm is  $\delta$ -stable if replacing one sample in S

 $\rightarrow \delta$  change in output  $(\hat{w})$ 

#### Roughly:

 $\delta$ -stability  $\rightarrow$   $O(\delta)$  gen-gap

• Step #2: "turn off" algorithmic stability

If f is sufficiently smooth (with  $\beta \leq 1/\eta$ )

 $\rightarrow$  SGD is  $\eta$ -stable [Hardt, Recht, Singer '16]

Algorithmic stability [Bousquet & Elisseeff '02]

learning algorithm is  $\delta$ -stable if replacing one sample in S

 $\rightarrow \delta$  change in output  $(\hat{w})$ 

Roughly:

 $\delta$ -stability  $\rightarrow$   $O(\delta)$  gen-gap

• Step #2: "turn off" algorithmic stability

Algorithmic stability
[Bousquet & Elisseeff '02]

learning algorithm is  $\delta$ -stable if replacing one sample in S

 $\rightarrow \delta$  change in output  $(\hat{w})$ 

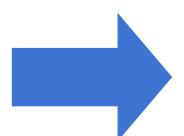
Roughly:

 $\delta$ -stability  $\rightarrow$   $O(\delta)$  gen-gap

If f is sufficiently smooth (with  $\beta \leq 1/\eta$ )

 $\rightarrow$  SGD is  $\eta$ -stable [Hardt, Recht, Singer '16]





f should be highly non-smooth around initialization

• Step #2: "turn off" algorithmic stability

Algorithmic stability [Bousquet & Elisseeff '02]

learning algorithm is  $\delta$ -stable if replacing one sample in S

 $\rightarrow \delta$  change in output  $(\hat{w})$ 

Roughly:

 $\delta$ -stability  $\rightarrow$   $O(\delta)$  gen-gap

If f is sufficiently smooth (with  $\beta \leq 1/\eta$ )

 $\rightarrow$  SGD is  $\eta$ -stable [Hardt, Recht, Singer '16]





f should be highly non-smooth around initialization

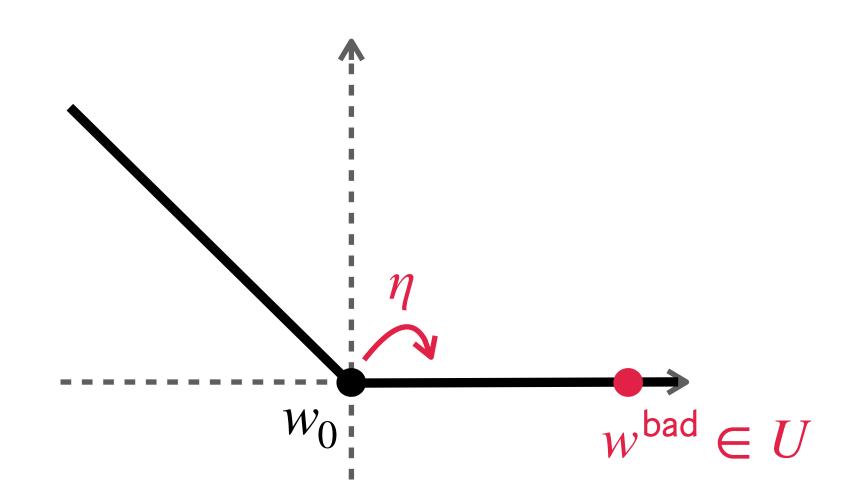


Allows for large SGD steps, potentially towards  $w^{\text{bad}}$ 

## Turn off algorithmic stability

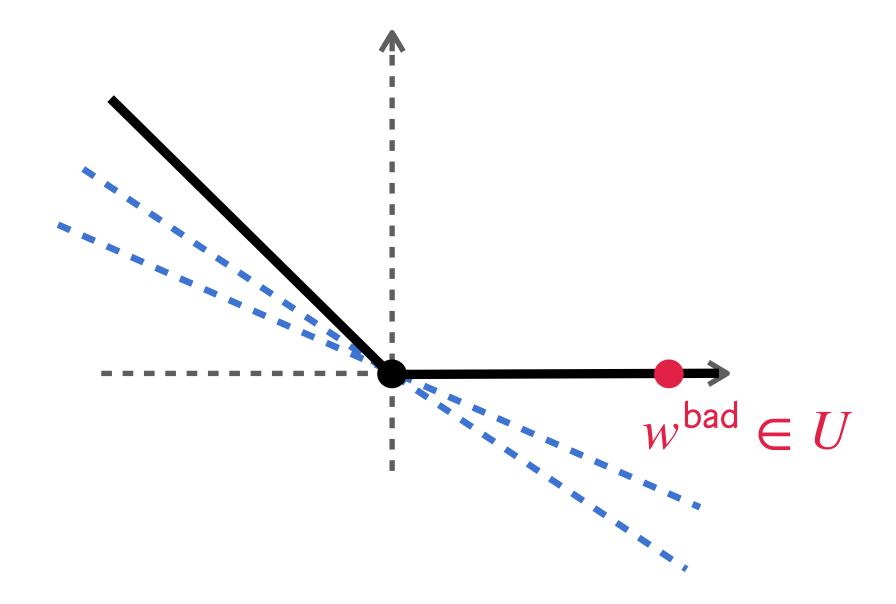
$$h(w) = \max_{u \in U} \langle w, u \rangle$$

variant of "Nemirovski's function"

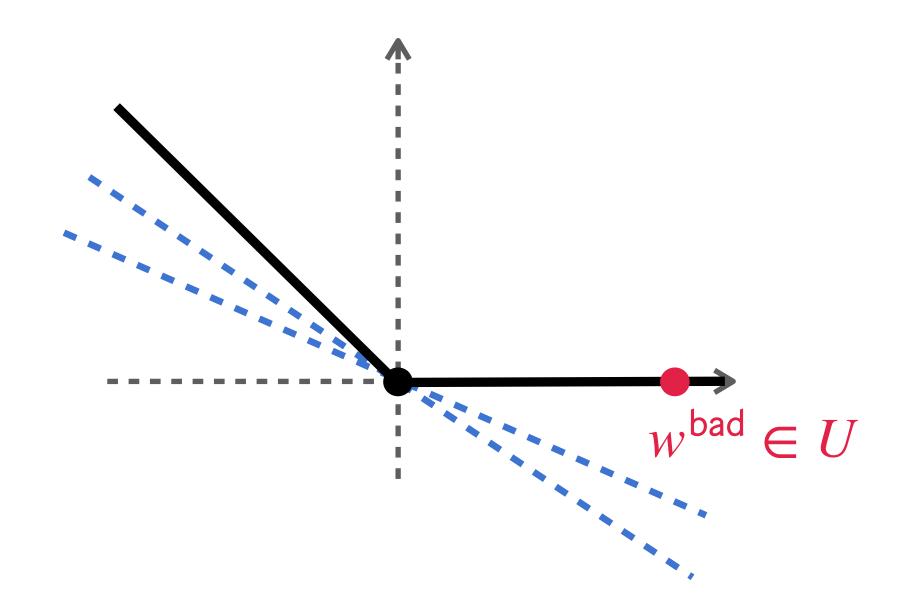


- Large subgradients at init due to non-smoothness
- Many subgradients, few of them aligned with  $w^{\text{bad}}$  ...

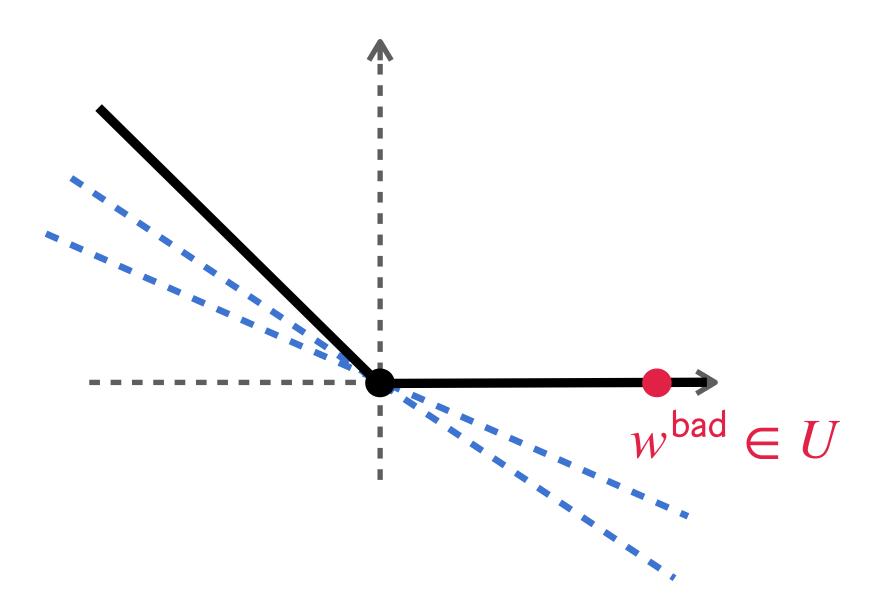
• Step #3: use instability to steer SGD towards  $w^{\rm bad}$ 



- Step #3: use instability to steer SGD towards  $w^{\rm bad}$ 
  - "Cheat" with sample dependent subgradient oracle



- Step #3: use instability to steer SGD towards  $w^{\text{bad}}$ 
  - "Cheat" with sample dependent subgradient oracle
  - Cheat can be removed by memorizing samples into SGD iterate
  - Construction can be made differentiable (unique subgradient at every point)



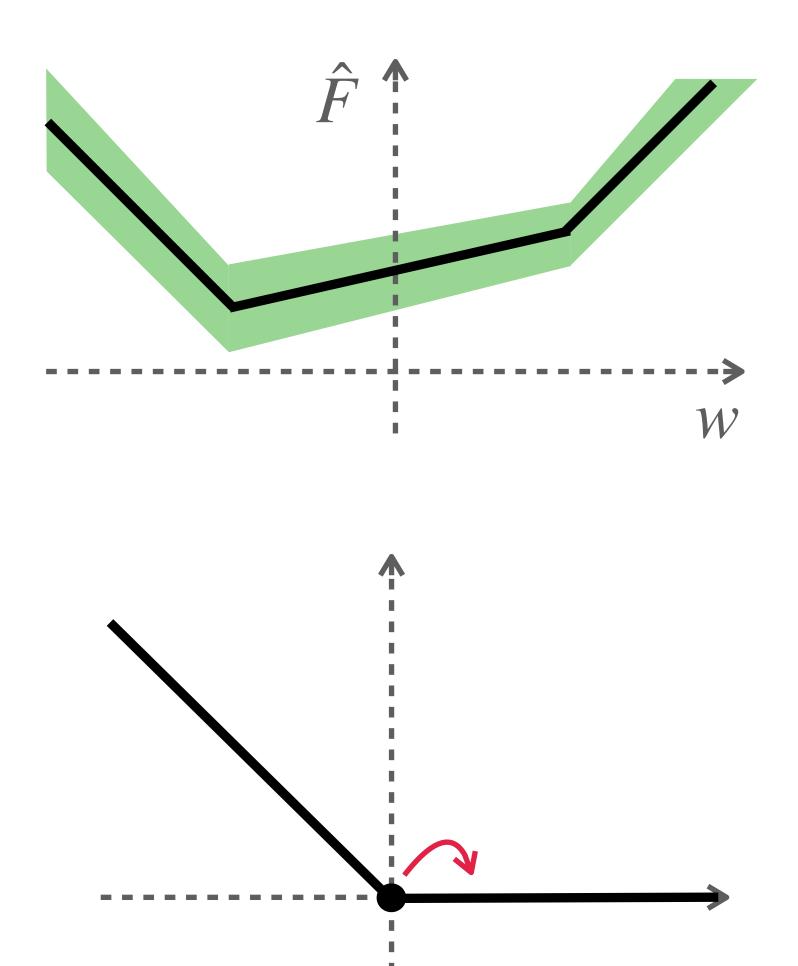
- Similar idea used implicitly in prior work [Amir, K, Livni '21], [K, Livni, Mansour, Sherman '21], [Schliserman, Sherman, K '24], ...
- Formalized nicely as a reduction by [Livni '24]

## Proof takeaways

 Two generalization mechanisms at play: uniform convergence and algorithmic stability

- Once "turned off", overfitting/underfitting can occur
- Regret remains controlled, but doesn't control generalization (gap)!

- Construction induces "memorization" of training samples into SGD iterate
- Memorizing (say) half of sample suffices



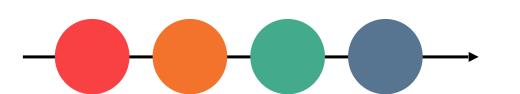
What happens after the first pass? (aka beyond online-to-batch regime)

## Multi-pass SGD

One-pass SGD

Optimal rate in SCO

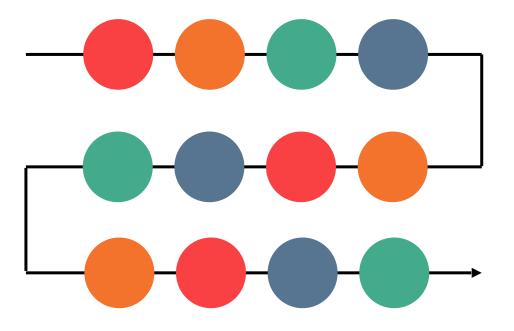
[Nemirovsky & Yudin '83]





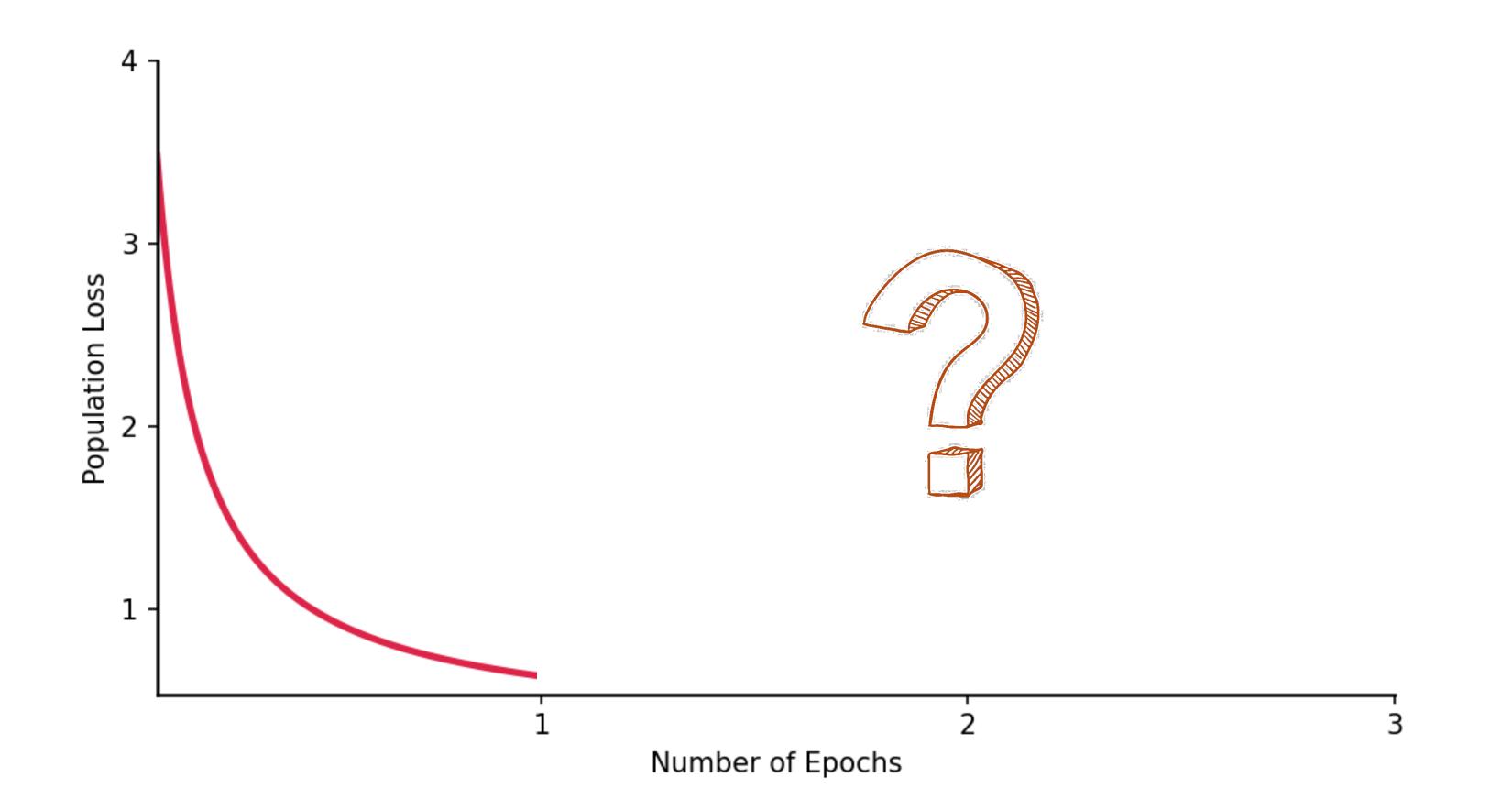
Multi-pass SGD

Common in practice Less understood



#### Multi-Pass SGD in SCO

with standard step size of  $\eta=1/\sqrt{n}$  , optimal after one pass. What happens if we keep training for more epochs?



#### Multi-Pass SGD in SCO

with standard step size of  $\eta=1/\sqrt{n}$  , optimal after one pass. What happens if we keep training for more epochs?



## Tight bounds for Multi-Pass SGD

#### Multi-pass SGD (without-replacement):

$$\Omega\left(\eta\sqrt{T} + \frac{\eta T}{n} + \frac{1}{\eta T}\right)$$
 population loss from the (end of the) 2nd epoch onward

#### With-replacement SGD:

$$\Omega\left(\eta\sqrt{T} + \frac{\eta T}{n} + \frac{1}{\eta T}\right) \text{ population loss after } \Theta(n\log n) \text{ steps (i.e. } \log n \text{ "passes")}$$

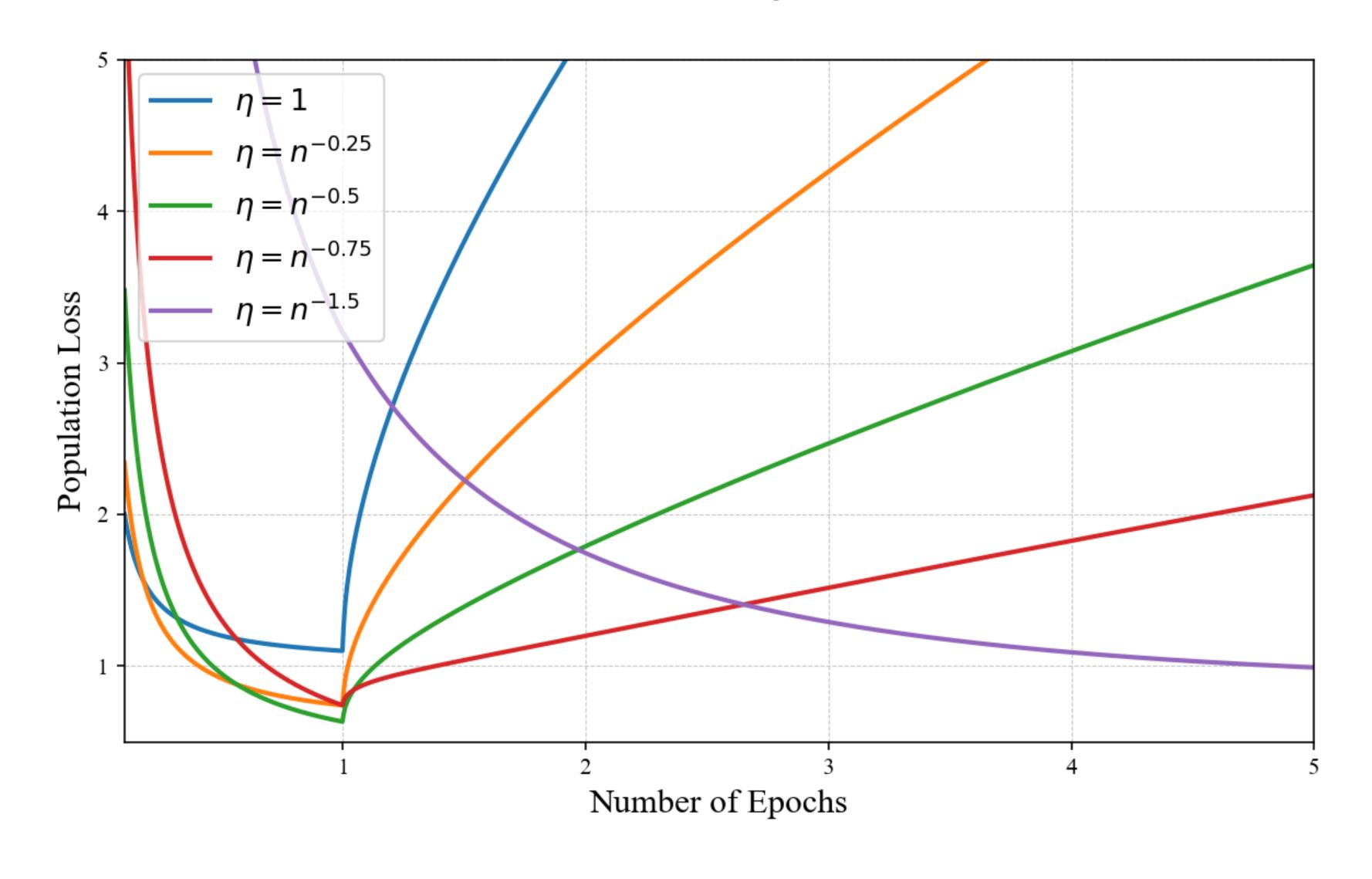
(thanks to coupon collector)

#### Matching upper bounds

Via algorithmic stability arguments

## Tight bounds for Multi-Pass SGD

for different stepsizes  $\eta$ 



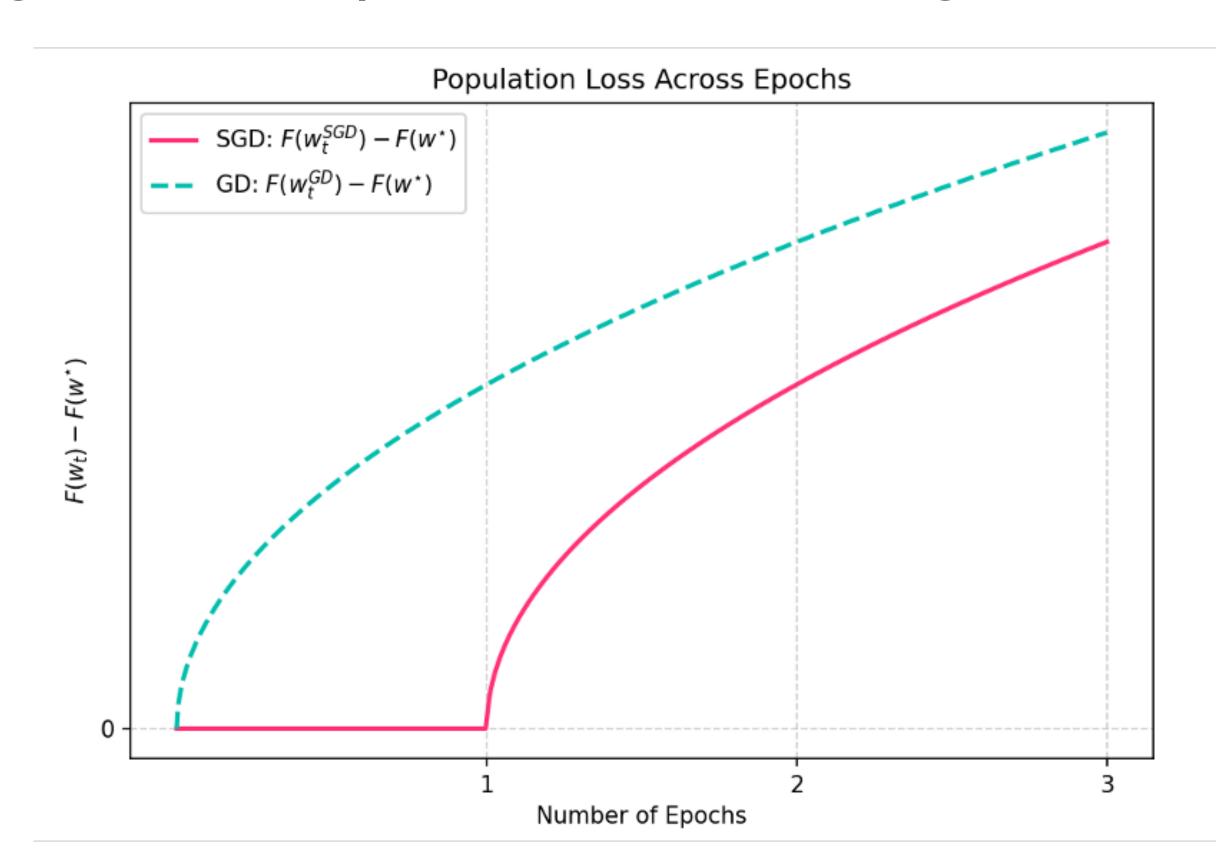
## Multi-pass SGD: proof ideas

- GD observes the entire sample each step → overfitting may occur [Amir, K, Livni '21, Schliserman, Sherman, K '24, Livni '24]
- ullet SGD doesn't observe the entire training set in first pass ullet no overfitting

## Multi-pass SGD: proof ideas

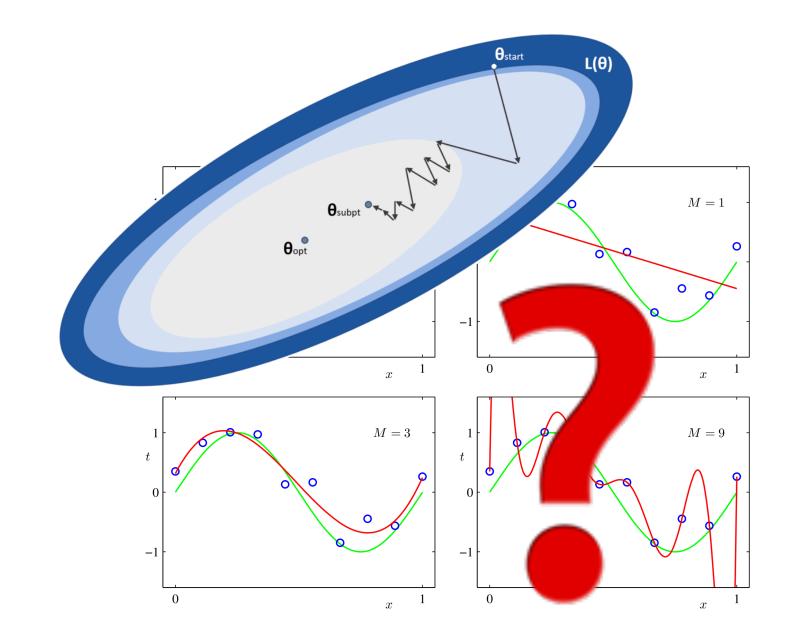
- GD observes the entire sample each step → overfitting may occur [Amir, K, Livni '21, Schliserman, Sherman, K '24, Livni '24]
- ullet SGD doesn't observe the entire training set in first pass ullet no overfitting

- Key idea: use first pass to "touch" and memorize entire sample
- Construct loss function s.t. SGD steps  $\approx$  remain at init while memorizing
- Once sample has been memorized, overfitting starts



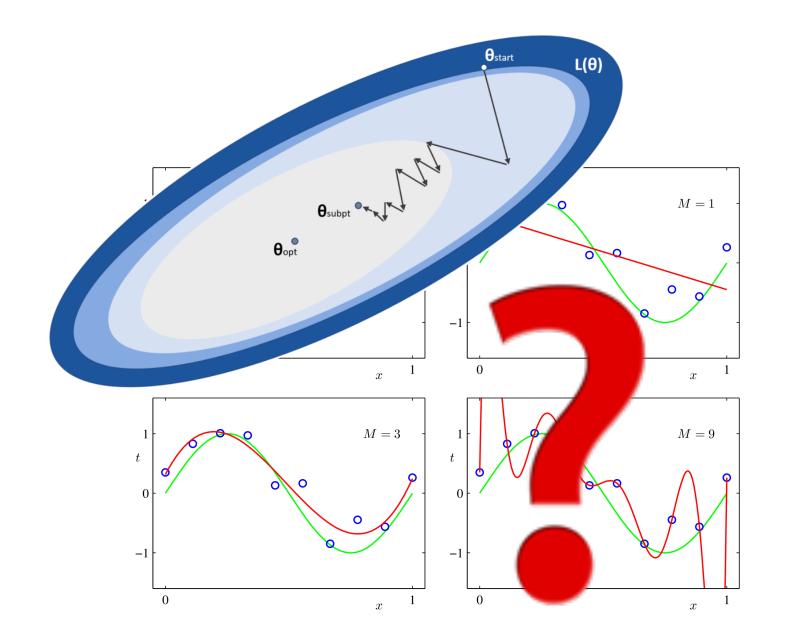
## Takeaways

- Classical SGD doesn't "fit" in conventional statistical learning theory
- Perspective to contemporary discussion on generalization in modern ML
- Emerging picture: first pass is in "regret regime", later passes governed by algorithmic stability
- More results for (full batch) Gradient Descent, more general full-batch methods, Sharpness-aware algorithms (SAM), ...



## Takeaways

- Classical SGD doesn't "fit" in conventional statistical learning theory
- Perspective to contemporary discussion on generalization in modern ML
- Emerging picture: first pass is in "regret regime", later passes governed by algorithmic stability
- More results for (full batch) Gradient Descent, more general full-batch methods, Sharpness-aware algorithms (SAM), ...



### Thanks!



