
 Beyond Online-to-Batch: Exploring the
Generalization Ability of (Convex) SGD

Tomer Koren
Tel Aviv University & Google

No new (faster/better/…) algorithms

No new framework/model/setting

Disclaimer

new aspects, perspectives, discoveries

about already great algorithms

in an already great setting

⛔

"

Revisit a fundamental result, from statistical learning perspective:

out-of-sample performance of SGD is minimax optimal in convex optimization

Outline

population
loss

one pass

optimal

[Nemirovsky &
Yudin ’83]

modern view: direct consequence of
regret + online-to-batch conversion

Outline

• What form of capacity control enables
this generalization ability?

• In what rate does SGD optimizes the
training loss / empirical risk?

population
loss

one pass

train?

“test”

optimal

Revisit a fundamental result, from statistical learning perspective:

out-of-sample performance of SGD is minimax optimal in convex optimization

Outline

population
loss

one pass pass #2 pass #3

train?

“test”

• What form of capacity control enables
this generalization ability?

• In what rate does SGD optimizes the
training loss / empirical risk?

• What happens after the first pass?
(aka beyond regret minimization regime)

optimal

Revisit a fundamental result, from statistical learning perspective:

out-of-sample performance of SGD is minimax optimal in convex optimization

Generalization

Data samples
z1, …, zn

Optimization
algorithm

Predictive
model

ŵ

Generalization

Data samples
z1, …, zn

Optimization
algorithm

Predictive
model

ŵ

̂F(w) = 1
n

n

∑
i=1

f(w, zi) F(w) = 𝔼z∼D[f(w, z)]
Empirical/training risk True/population riskzi ∼iid D (unknown)

real goal
generalization

• Convex, 1-Lipschitz loss

• Goal: minimize population/true risk:

f(w, z)

Setup: Stochastic Convex Optimization (SCO)

• Access to sample S = {z1, …, zn} ∼iid D

F(w) = 𝔼z∼D[f(w, z)]
data

sample model
∈ ℝd

data dist.
(unknown)

loss func.

• Convex, 1-Lipschitz loss

• Goal: minimize population/true risk:

f(w, z)

Setup: Stochastic Convex Optimization (SCO)

• Access to sample S = {z1, …, zn} ∼iid D

• Empirical risk:

̂F(w) = 1
n

n

∑
i=1

f(w, zi)

F(w) = 𝔼z∼D[f(w, z)]
data

sample model
∈ ℝd

data dist.
(unknown)

loss func.

• Generalization gap:

Δ(w) = ̂F(w) − F(w)

Generalization in SCO is (still) compelling

• Fundamental in optimization, extremely well studied

• Home to common, real-world algorithms (incl. SGD)

• Global optimization is “easy”—allows isolating generalization

• Generalization in SCO known to be algorithm-dependent
(unlike in other classical models: PAC, GLMs, …)
[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

• Instructive to demonstrate interesting (generalization)
phenomena in simple cases

Generalization in SCO is (still) compelling

• Fundamental in optimization, extremely well studied

• Home to common, real-world algorithms (incl. SGD)

• Global optimization is “easy”—allows isolating generalization

SGD is minimax optimal in SCO

[Nemirovsky & Yudin ’83]

SGD is minimax optimal in SCO

wt+1 = wt − η∇w f(wt, zt)
w0 = initSGD

(one pass)

SGD is minimax optimal in SCO

𝔼[F(ŵ)] − F⋆ ≲ 1
ηn

+ η ≲ 1
n

ŵ = 1
n Σn

t=1wt

• Theorem:

• Bound is minimax optimal up to constants, independent of dimension

• Modern view: consequence of regret + online-to-batch conversion

• Many extensions: other geometries (mirror descent), adaptive versions, …

η ≅ 1
n

wt+1 = wt − η∇w f(wt, zt)
w0 = initSGD

(one pass)

[N&Y ’83]
(convex , -Lipschitz)f G

Proof from the book

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD

gt = ∇w f(wt, zt)

Proof from the book

∥wt+1 − w*∥2 ≤ ∥wt − w*∥2 − 2ηgt ⋅ (wt − w*) + η2∥gt∥2

gt ⋅ (wt − w*) ≤ 1
2η (∥wt − w*∥2 − ∥wt+1 − w*∥2) + η

2 G2

1
n

n

∑
t=1

gt ⋅ (wt − w*) ≤ 1
2ηn

∥w1 − w*∥2 + η
2 G2

(∥gt∥ ≤ G)

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD

(online gradient descent
regret bound)

≅ O(1)
n

Proof from the book

1
n

n

∑
t=1

gt ⋅ (wt − w*) ≤ 1
2ηn

∥w1 − w*∥2 + η
2 G2 for η ≅ 1

n

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD

≅ O(1)
n

Proof from the book

1
n

n

∑
t=1

gt ⋅ (wt − w*) ≤ 1
2ηn

∥w1 − w*∥2 + η
2 G2

𝔼[1
n

n

∑
t=1

gt ⋅ (wt − w*)] = 1
n

n

∑
t=1

𝔼[∇F(wt) ⋅ (wt − w*)] ≥ 1
n

n

∑
t=1

𝔼[F(wt) − F(w*)]

for η ≅ 1
n

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD

𝔼[F(w)] − F(w*) ≤ 1
n

n

∑
t=1

𝔼[F(wt) − F(w*)] ≲ O(1)
n

(w = 1
n Σn

t=1wt)

≅ O(1)
n

Proof from the book

1
n

n

∑
t=1

gt ⋅ (wt − w*) ≤ 1
2ηn

∥w1 − w*∥2 + η
2 G2

𝔼[1
n

n

∑
t=1

gt ⋅ (wt − w*)] = 1
n

n

∑
t=1

𝔼[∇F(wt) ⋅ (wt − w*)] ≥ 1
n

n

∑
t=1

𝔼[F(wt) − F(w*)]

for η ≅ 1
n

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD

𝔼[F(w)] − F(w*) ≤ 1
n

n

∑
t=1

𝔼[F(wt) − F(w*)] ≲ O(1)
n

(w = 1
n Σn

t=1wt) * Empirical
risk?

What form of capacity control is at play?

Capacity control

“bad
overfitting”

“with too much fitting,
the model adapts itself

too closely to the
training data, and

will not generalize well”

The Elements of
Statistical Learning
[Hastie-Tibshirani-

Friedman ’09]

controlled
model capacity

uncontrolled
model capacity

“underfitting”

|𝔼F(ŵ) − 𝔼 ̂F(ŵ) |𝔼[̂F(ŵ) − ̂F⋆]𝔼[F(ŵ) − F⋆]

Capacity control Generalization Bounds⟺

≤ +

test-error train-error + |generalization-gap|≤

• More recently: Implicit bias, interpolating algorithms, benign overfitting, …

• VC / Rademacher bounds [Vapnik ’71, Valiant ’84, Bartlett et al. ’02, …]

• Algorithmic stability [Bousquet & Elisseeff ’02, Hardt et al. ’16, …]

• PAC-Bayes [McAllester ’99; Dziugaite and Roy ’18, …]

• Sample compression [Littlestone & Warmuth ’86; Arora et al. ’18, …]

• Information-theoretic bounds [Xu & Raginsky ’17, Neu ’21, …]

• …

capacity
control

“Laws of Large
Numbers
approach”

loss

SGD steps

train?

test gap?

SGD’s generalization gap?

test-error |train-error| + |gen-gap|≤
O(1/ n) ? ?

Theorem: dist. and convex, 1-Lipschitz loss

over {unit ball in } in dim

s.t. for SGD “from the book” (one pass,):

∃ D f(w, z)
W = ℝd d = Θ̃(n)

η ≅ 1/ n

SGD doesn’t generalize wt+1 = ΠW[wt − η∇f(wt, zt)]
(one pass) SGD

𝔼[̂F(ŵ) − ̂F⋆] ≳ 1

1. True risk is (optimally) small:

2. Empirical risk is (trivially) large:

3. Gen-gap is (trivially) large: 𝔼[̂F(ŵ) − F(ŵ)] ≳ 1

ŵ = 1
n Σn

t=1wt

𝔼[F(ŵ) − F⋆] ≲ 1
n

• K, Livni, Mansour, Sherman ’22; Schliserman, Sherman, K ’25; Vansover-Hager, K, Livni ’25

[N&Y ’83]

loss

SGD steps

train

test

gap

“Benign Underfitting”

test-error |train-error| + |gen-gap|≤
Ω(1)Ω(1)O(1/ n)

loss

SGD steps

train

test

gap

“Benign Underfitting”

test-error |train-error| + |gen-gap|≤
Ω(1)Ω(1)O(1/ n)

• “Laws of Large Numbers
approach” fails for SGD

• Even in most basic, fundamental
setup (convex optimization)

loss

SGD steps

train

test

gap

“Benign Underfitting”

test-error |train-error| + |gen-gap|≤
Ω(1)Ω(1)O(1/ n)

• “Laws of Large Numbers
approach” fails for SGD

• Even in most basic, fundamental
setup (convex optimization)

• Out-of-sample performance (only?)
explained by stochastic approx. /
regret analysis

• No (effective) “implicit bias”

Contemporary wisdom: “Implicit bias”

sup
w⋆∈H𝖺𝗅𝗀

w⋆

H𝖺𝗅𝗀

Optimization

• Modern belief: common optimization algorithms are implicitly biased

towards “simple” models, thus generalize

• “Simple” is e.g.: low norm, sparse, low-rank, short MDL, …

set of
“simple”
 models

Generalization

train-loss |gen-gap|

min
w

̂F(w) F(w⋆) − ̂F(w⋆)

loss

SGD steps

train

test

gap

“Benign Underfitting”

Ω(1)

No implicit bias
(for SGD in SCO)

F(w) − ̂F(w)
is large at

SGD solution

More generally

𝔼[̂F(ŵ) − ̂F⋆] ≳ min {η n + 1
η n

, 1}1. Empirical risk is large:

2. Gen-gap is large: 𝔼[̂F(ŵ) − F(ŵ)] ≳ min {η n + 1
η n

, 1}

☞ E.g. implies that gen-gap is trivially large unless

☞ Dim dependence is ~optimal: when uniform convergence kicks in

n = Ω(d)
d = o(n)

wt+1 = ΠW[wt − η∇f(wt, zt)]
(one pass) SGD

ŵ = 1
n Σn

t=1wt

Theorem: , dist. and convex, 1-Lipschitz

over {unit ball in } in dim
s.t. for SGD with any :

∀ n, η > 0 ∃ D f(w, z)
W = ℝd d = Θ̃(n)

η > 0

Proof ideas
• Step #1: “turn off” uniform convergence

w

̂F

sup
w∈W

| ̂F(w) − F(w) | ≲ d
n

(laws of large numbers)

Proof ideas
• Step #1: “turn off” uniform convergence

w

̂F

sup
w∈W

| ̂F(w) − F(w) | ≲ d
n

(laws of large numbers)

‣ UC rate is
 work in dimension

‣ Show that
with large generalization gap

O(d/n)
⟹ d = Ω(n)

∃ w𝖻𝖺𝖽 ∈ W

Turn off uniform convergence

0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : : : :

1 0 1 0 … … 1 1 1

z1

z2

zn

i = 1 i = d

0/1
w.p. 1

2

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : 1 : :

1

1

1

1 0 1 0 … … 1 1 1

z1

z2

zn

i = 1 i = d

w.p.

if

≥ 1
2

d ≥ 2n

0/1
w.p. 1

2

k
[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

Turn off uniform convergence

0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : 1 : :

1

1

1

1 0 1 0 … … 1 1 1

z1

z2

zn

f(w, z) =
d

∑
i=1

z(i)w2(i)

convex, Lipschitz
(over unit ball)

k

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

Turn off uniform convergence

0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : 1 : :

1

1

1

1 0 1 0 … … 1 1 1

z1

z2

zn

f(w, z) =
d

∑
i=1

z(i)w2(i)

convex, Lipschitz
(over unit ball)

k ̂F(ek) = 1

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

Turn off uniform convergence

0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : 1 : :

1

1

1

1 0 1 0 … … 1 1 1

z1

z2

zn

f(w, z) =
d

∑
i=1

z(i)w2(i)

convex, Lipschitz
(over unit ball)

k

F(ek) = 1
2

̂F(ek) = 1

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

Turn off uniform convergence

• Construction of requires dimension …f, D d ≥ 2Θ(n)

Turn off uniform convergence

 orthogonal
directions in

2n

d = 2n

• Construction of requires dimension …f, D d ≥ 2Θ(n)

Turn off uniform convergence

 orthogonal
directions in

2n

d = 2n
 nearly orthogonal

directions in
exp(n)

d = O(n)
[Feldman ’16]

⟨u, u′ ⟩ ≤ 1
2

U

Proof ideas
• Step #2: “turn off” algorithmic stability

learning algorithm is -stable
if replacing one sample in
➜ change in output ()

Roughly:
-stability ➜ gen-gap

δ
S

δ ŵ

δ O(δ)

Algorithmic stability
[Bousquet & Elisseeff ’02]

Proof ideas
• Step #2: “turn off” algorithmic stability

learning algorithm is -stable
if replacing one sample in
➜ change in output ()

Roughly:
-stability ➜ gen-gap

δ
S

δ ŵ

δ O(δ)

If is sufficiently smooth (with)
➜ SGD is -stable [Hardt, Recht, Singer ’16]

f β ≤ 1/η
η

Algorithmic stability
[Bousquet & Elisseeff ’02]

Proof ideas
• Step #2: “turn off” algorithmic stability

learning algorithm is -stable
if replacing one sample in
➜ change in output ()

Roughly:
-stability ➜ gen-gap

δ
S

δ ŵ

δ O(δ)

If is sufficiently smooth (with)
➜ SGD is -stable [Hardt, Recht, Singer ’16]

f β ≤ 1/η
η

 should be highly non-smooth
around initialization

f

Algorithmic stability
[Bousquet & Elisseeff ’02]

Proof ideas
• Step #2: “turn off” algorithmic stability

learning algorithm is -stable
if replacing one sample in
➜ change in output ()

Roughly:
-stability ➜ gen-gap

δ
S

δ ŵ

δ O(δ)

If is sufficiently smooth (with)
➜ SGD is -stable [Hardt, Recht, Singer ’16]

f β ≤ 1/η
η

 should be highly non-smooth
around initialization

f

Algorithmic stability
[Bousquet & Elisseeff ’02]

Allows for large SGD steps,
potentially towards w𝖻𝖺𝖽

w𝖻𝖺𝖽 ∈ U

• Large subgradients at init due to non-smoothness

• Many subgradients, few of them aligned with …w𝖻𝖺𝖽

w0

η

h(w) = max
u∈U

⟨w, u⟩

Turn off algorithmic stability

variant of
“Nemirovski’s function”

Proof ideas

• Step #3: use instability to steer SGD towards w𝖻𝖺𝖽

w𝖻𝖺𝖽 ∈ U

Proof ideas

• Step #3: use instability to steer SGD towards w𝖻𝖺𝖽

‣ “Cheat” with sample dependent subgradient
oracle

w𝖻𝖺𝖽 ∈ U

Proof ideas

• Similar idea used implicitly in prior work [Amir, K, Livni ’21], [K, Livni, Mansour,
Sherman ’21], [Schliserman, Sherman, K ’24], …

• Formalized nicely as a reduction by [Livni ’24]

• Step #3: use instability to steer SGD towards w𝖻𝖺𝖽

‣ “Cheat” with sample dependent subgradient
oracle

‣ Cheat can be removed by memorizing samples
into SGD iterate

‣ Construction can be made differentiable
(unique subgradient at every point)

w𝖻𝖺𝖽 ∈ U

• Two generalization mechanisms at play:
uniform convergence and algorithmic stability

• Once “turned off”, overfitting/underfitting can occur

• Regret remains controlled, but doesn’t control
generalization (gap)!

• Construction induces “memorization” of training
samples into SGD iterate

• Memorizing (say) half of sample suffices

Proof takeaways

w

̂F

What happens after the first pass?

(aka beyond online-to-batch regime)

Multi-pass SGD

One-pass SGD
Optimal rate in SCO

Multi-pass SGD
Common in practice

Less understood[Nemirovsky & Yudin ’83]

with standard step size of , optimal after one pass.

 What happens if we keep training for more epochs?

η = 1/ n

Multi-Pass SGD in SCO

𝛀(𝟏)

Multi-Pass SGD in SCO

Our result:
 population loss after just
one additional pass

𝛀(𝟏)

with standard step size of , optimal after one pass.

 What happens if we keep training for more epochs?

η = 1/ n

Tight bounds for Multi-Pass SGD

Multi-pass SGD (without-replacement):

 population loss from the (end of the) 2nd epoch onward

With-replacement SGD:

 population loss after steps (i.e. “passes”)

(thanks to coupon collector)

Matching upper bounds
Via algorithmic stability arguments

Ω (η T + ηT
n

+ 1
ηT)

Ω (η T + ηT
n

+ 1
ηT) Θ(n log n) log n

[Vansover-Hager, K, Livni ’25]

for different stepsizes η

Tight bounds for Multi-Pass SGD

• GD observes the entire sample each step → overfitting may occur
[Amir, K, Livni ’21, Schliserman, Sherman, K ’24, Livni ’24]

• SGD doesn't observe the entire training set in first pass → no overfitting

Multi-pass SGD: proof ideas

• GD observes the entire sample each step → overfitting may occur
[Amir, K, Livni ’21, Schliserman, Sherman, K ’24, Livni ’24]

• SGD doesn't observe the entire training set in first pass → no overfitting

Multi-pass SGD: proof ideas

• Key idea: use first pass to “touch” and
memorize entire sample

• Construct loss function s.t. SGD steps
 remain at init while memorizing

• Once sample has been memorized,
overfitting starts

≈

• Classical SGD doesn’t “fit” in conventional
statistical learning theory

• Perspective to contemporary discussion on
generalization in modern ML

• Emerging picture: first pass is in “regret regime”,
later passes governed by algorithmic stability

• More results for (full batch) Gradient Descent,
more general full-batch methods, Sharpness-aware
algorithms (SAM), …

Takeaways

❓

• Classical SGD doesn’t “fit” in conventional
statistical learning theory

• Perspective to contemporary discussion on
generalization in modern ML

• Emerging picture: first pass is in “regret regime”,
later passes governed by algorithmic stability

• More results for (full batch) Gradient Descent,
more general full-batch methods, Sharpness-aware
algorithms (SAM), …

Takeaways

Thanks!

❓

