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No new (faster/better/…) algorithms

No new framework/model/setting

Disclaimer

new aspects, perspectives, discoveries

about already great algorithms

in an already great setting

⛔

"



Revisit a fundamental result, from statistical learning perspective:  
 
out-of-sample performance of SGD is minimax optimal in convex optimization

Outline

population 
loss

one pass

optimal

[Nemirovsky & 
Yudin ’83]

modern view: direct consequence of 
regret + online-to-batch conversion



Outline

• What form of capacity control enables 
this generalization ability?

• In what rate does SGD optimizes the 
training loss / empirical risk?

population 
loss

one pass

train?

“test”

optimal

Revisit a fundamental result, from statistical learning perspective:  
 
out-of-sample performance of SGD is minimax optimal in convex optimization



Outline

population 
loss

one pass pass #2 pass #3

train?

“test”

• What form of capacity control enables 
this generalization ability?

• In what rate does SGD optimizes the 
training loss / empirical risk?

• What happens after the first pass? 
(aka beyond regret minimization regime) 

optimal

Revisit a fundamental result, from statistical learning perspective:  
 
out-of-sample performance of SGD is minimax optimal in convex optimization



Generalization
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z1, …, zn
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Generalization

Data samples  
z1, …, zn

Optimization 
algorithm

Predictive
model

ŵ

̂F(w) = 1
n

n

∑
i=1

f(w, zi) F(w) = 𝔼z∼D[f(w, z)]
Empirical/training risk True/population riskzi ∼iid D (unknown)

real goal
generalization



• Convex, 1-Lipschitz loss  

• Goal: minimize population/true risk:

f(w, z)

Setup: Stochastic Convex Optimization (SCO)

• Access to sample  S = {z1, …, zn} ∼iid D

F(w) = 𝔼z∼D[f(w, z)]
data 

sample model 
∈ ℝd

data dist. 
(unknown)

loss func. 



• Convex, 1-Lipschitz loss  

• Goal: minimize population/true risk:

f(w, z)

Setup: Stochastic Convex Optimization (SCO)

• Access to sample  S = {z1, …, zn} ∼iid D

• Empirical risk:

̂F(w) = 1
n

n

∑
i=1

f(w, zi)

F(w) = 𝔼z∼D[f(w, z)]
data 

sample model 
∈ ℝd

data dist. 
(unknown)

loss func. 

• Generalization gap:

Δ(w) = ̂F(w) − F(w)



Generalization in SCO is (still) compelling 

• Fundamental in optimization, extremely well studied

• Home to common, real-world algorithms (incl. SGD)

• Global optimization is “easy”—allows isolating generalization 



• Generalization in SCO known to be algorithm-dependent 
(unlike in other classical models: PAC, GLMs, …)  
[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

• Instructive to demonstrate interesting (generalization) 
phenomena in simple cases

Generalization in SCO is (still) compelling 

• Fundamental in optimization, extremely well studied

• Home to common, real-world algorithms (incl. SGD)

• Global optimization is “easy”—allows isolating generalization 



SGD is minimax optimal in SCO

[Nemirovsky & Yudin ’83]



SGD is minimax optimal in SCO

wt+1 = wt − η∇w f(wt, zt)
w0 = initSGD  

(one pass)



SGD is minimax optimal in SCO

𝔼[F(ŵ)] − F⋆ ≲ 1
ηn

+ η ≲ 1
n

ŵ = 1
n Σn

t=1wt

• Theorem:

• Bound is minimax optimal up to constants, independent of dimension

• Modern view: consequence of regret + online-to-batch conversion

• Many extensions: other geometries (mirror descent), adaptive versions, …

η ≅ 1
n

wt+1 = wt − η∇w f(wt, zt)
w0 = initSGD  

(one pass)

[N&Y ’83]
(  convex , -Lipschitz)f G



Proof from the book

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD

gt = ∇w f(wt, zt)



Proof from the book

∥wt+1 − w*∥2 ≤ ∥wt − w*∥2 − 2ηgt ⋅ (wt − w*) + η2∥gt∥2

gt ⋅ (wt − w*) ≤ 1
2η (∥wt − w*∥2 − ∥wt+1 − w*∥2) + η

2 G2

1
n

n

∑
t=1

gt ⋅ (wt − w*) ≤ 1
2ηn

∥w1 − w*∥2 + η
2 G2

(∥gt∥ ≤ G)

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD

(online gradient descent 
regret bound)



≅ O(1)
n

Proof from the book

1
n

n

∑
t=1

gt ⋅ (wt − w*) ≤ 1
2ηn

∥w1 − w*∥2 + η
2 G2 for η ≅ 1

n

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD



≅ O(1)
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Proof from the book

1
n

n

∑
t=1

gt ⋅ (wt − w*) ≤ 1
2ηn

∥w1 − w*∥2 + η
2 G2

𝔼[ 1
n

n

∑
t=1

gt ⋅ (wt − w*)] = 1
n

n

∑
t=1

𝔼[∇F(wt) ⋅ (wt − w*)] ≥ 1
n

n

∑
t=1

𝔼[F(wt) − F(w*)]

for η ≅ 1
n
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𝔼[F(w)] − F(w*) ≤ 1
n

n

∑
t=1
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n Σn
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1
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gt ⋅ (wt − w*) ≤ 1
2ηn

∥w1 − w*∥2 + η
2 G2

𝔼[ 1
n

n

∑
t=1

gt ⋅ (wt − w*)] = 1
n

n

∑
t=1

𝔼[∇F(wt) ⋅ (wt − w*)] ≥ 1
n

n

∑
t=1

𝔼[F(wt) − F(w*)]

for η ≅ 1
n

wt+1 = wt − ηgt ; 𝔼[gt ∣ wt] = ∇F(wt)SGD

𝔼[F(w)] − F(w*) ≤ 1
n

n

∑
t=1

𝔼[F(wt) − F(w*)] ≲ O(1)
n

(w = 1
n Σn

t=1wt) * Empirical 
risk?



What form of capacity control is at play?



Capacity control

“bad
overfitting”

“with too much fitting, 
the model adapts itself 

too closely to the
training data, and  

will not generalize well”

The Elements of 
Statistical Learning 
[Hastie-Tibshirani-

Friedman ’09]

controlled 
model capacity

uncontrolled 
model capacity

“underfitting”



|𝔼F(ŵ) − 𝔼 ̂F(ŵ) |𝔼[ ̂F(ŵ) − ̂F⋆]𝔼[F(ŵ) − F⋆]

Capacity control  Generalization Bounds⟺

≤ +

test-error    train-error  +  |generalization-gap|≤

• More recently: Implicit bias, interpolating algorithms, benign overfitting, …

• VC / Rademacher bounds [Vapnik ’71, Valiant ’84, Bartlett et al. ’02, …]

• Algorithmic stability [Bousquet & Elisseeff ’02, Hardt et al. ’16, …]

• PAC-Bayes [McAllester ’99; Dziugaite and Roy ’18, …]

• Sample compression [Littlestone & Warmuth ’86;  Arora et al. ’18, …]

• Information-theoretic bounds [Xu & Raginsky ’17, Neu ’21, …]

• …

capacity 
control

“Laws of Large 
Numbers 
approach”



loss

SGD steps

train?

test gap?

SGD’s generalization gap?

test-error    |train-error|  +  |gen-gap|≤
O(1/ n) ? ?



Theorem:     dist.  and convex, 1-Lipschitz loss   

over {unit ball in }  in dim  

s.t.  for SGD “from the book” (one pass, ):

∃ D f(w, z)
W = ℝd d = Θ̃(n)

η ≅ 1/ n

SGD doesn’t generalize wt+1 = ΠW[wt − η∇f(wt, zt)]
(one pass) SGD

𝔼[ ̂F(ŵ) − ̂F⋆] ≳ 1

1. True risk is (optimally) small:  

2. Empirical risk is (trivially) large:

3. Gen-gap is (trivially) large: 𝔼[ ̂F(ŵ) − F(ŵ)] ≳ 1

ŵ = 1
n Σn

t=1wt

𝔼[F(ŵ) − F⋆] ≲ 1
n

• K, Livni, Mansour, Sherman ’22; Schliserman, Sherman, K ’25; Vansover-Hager, K, Livni ’25

[N&Y ’83]



loss

SGD steps

train

test

gap

“Benign Underfitting”

test-error    |train-error|  +  |gen-gap|≤
Ω(1)Ω(1)O(1/ n)



loss

SGD steps

train

test

gap

“Benign Underfitting”

test-error    |train-error|  +  |gen-gap|≤
Ω(1)Ω(1)O(1/ n)

• “Laws of Large Numbers 
approach” fails for SGD 

• Even in most basic, fundamental 
setup (convex optimization)



loss

SGD steps

train

test

gap

“Benign Underfitting”

test-error    |train-error|  +  |gen-gap|≤
Ω(1)Ω(1)O(1/ n)

• “Laws of Large Numbers 
approach” fails for SGD 

• Even in most basic, fundamental 
setup (convex optimization)

• Out-of-sample performance (only?) 
explained by stochastic approx. / 
regret analysis

• No (effective) “implicit bias”



Contemporary wisdom: “Implicit bias”

sup
w⋆∈H𝖺𝗅𝗀

w⋆

H𝖺𝗅𝗀

Optimization

• Modern belief: common optimization algorithms are implicitly biased  

towards “simple” models, thus generalize

• “Simple” is e.g.:  low norm, sparse, low-rank, short MDL, …

set of  
“simple” 
 models

Generalization

train-loss |gen-gap|

min
w

̂F(w) F(w⋆) − ̂F(w⋆)



loss

SGD steps

train

test

gap

“Benign Underfitting”

Ω(1)

No implicit bias
(for SGD in SCO)

F(w) − ̂F(w)
is large at  

SGD solution



More generally

𝔼[ ̂F(ŵ) − ̂F⋆] ≳ min {η n + 1
η n

, 1}1. Empirical risk is large:

2. Gen-gap is large: 𝔼[ ̂F(ŵ) − F(ŵ)] ≳ min {η n + 1
η n

, 1}

☞  E.g. implies that gen-gap is trivially large unless 

☞  Dim dependence is ~optimal:  when  uniform convergence kicks in

n = Ω(d)
d = o(n)

wt+1 = ΠW[wt − η∇f(wt, zt)]
(one pass) SGD

ŵ = 1
n Σn

t=1wt

Theorem: ,   dist.  and convex, 1-Lipschitz   

over {unit ball in } in dim  
s.t.  for SGD with any :

∀ n, η > 0 ∃ D f(w, z)
W = ℝd d = Θ̃(n)

η > 0



Proof ideas
• Step #1: “turn off” uniform convergence

w

̂F

sup
w∈W

| ̂F(w) − F(w) | ≲ d
n

(laws of large numbers)



Proof ideas
• Step #1: “turn off” uniform convergence

w

̂F

sup
w∈W

| ̂F(w) − F(w) | ≲ d
n

(laws of large numbers)

‣ UC rate is    
  work in dimension  

‣ Show that     
with large generalization gap

O( d/n)
⟹ d = Ω(n)

∃ w𝖻𝖺𝖽 ∈ W



Turn off uniform convergence

0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : : : :

1 0 1 0 … … 1 1 1

z1

z2

zn

i = 1 i = d

0/1 
w.p. 1

2

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]



0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : 1 : :

1

1

1

1 0 1 0 … … 1 1 1

z1

z2

zn

i = 1 i = d

w.p.  

if 

≥ 1
2

d ≥ 2n

0/1 
w.p. 1

2

k
[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

Turn off uniform convergence



0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : 1 : :

1

1

1

1 0 1 0 … … 1 1 1

z1

z2

zn

f(w, z) =
d

∑
i=1

z(i)w2(i)

convex, Lipschitz
(over unit ball)

k

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

Turn off uniform convergence



0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : 1 : :

1

1

1

1 0 1 0 … … 1 1 1

z1

z2

zn

f(w, z) =
d

∑
i=1

z(i)w2(i)

convex, Lipschitz
(over unit ball)

k ̂F(ek) = 1

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

Turn off uniform convergence



0 0 1 0 … … 1 0 1

1 1 1 0 … … 1 1 0

: : : : 1 : :

1

1

1

1 0 1 0 … … 1 1 1

z1

z2

zn

f(w, z) =
d

∑
i=1

z(i)w2(i)

convex, Lipschitz
(over unit ball)

k

F(ek) = 1
2

̂F(ek) = 1

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]

Turn off uniform convergence



• Construction of   requires dimension …f, D d ≥ 2Θ(n)

Turn off uniform convergence

 orthogonal 
directions in 

2n

d = 2n



• Construction of   requires dimension …f, D d ≥ 2Θ(n)

Turn off uniform convergence

 orthogonal 
directions in 

2n

d = 2n
 nearly orthogonal 

directions in 
exp(n)

d = O(n)
[Feldman ’16]

⟨u, u′ ⟩ ≤ 1
2

U



Proof ideas
• Step #2: “turn off” algorithmic stability

learning algorithm is -stable  
if replacing one sample in  
➜  change in output ( ) 

Roughly: 
-stability  ➜   gen-gap

δ
S

δ ŵ

δ O(δ)

Algorithmic stability 
[Bousquet & Elisseeff ’02]



Proof ideas
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learning algorithm is -stable  
if replacing one sample in  
➜  change in output ( ) 

Roughly: 
-stability  ➜   gen-gap

δ
S

δ ŵ

δ O(δ)

If  is sufficiently smooth (with )   
➜ SGD is -stable [Hardt, Recht, Singer ’16]

f β ≤ 1/η
η

Algorithmic stability 
[Bousquet & Elisseeff ’02]



Proof ideas
• Step #2: “turn off” algorithmic stability

learning algorithm is -stable  
if replacing one sample in  
➜  change in output ( ) 

Roughly: 
-stability  ➜   gen-gap

δ
S

δ ŵ

δ O(δ)

If  is sufficiently smooth (with )   
➜ SGD is -stable [Hardt, Recht, Singer ’16]

f β ≤ 1/η
η

 should be highly non-smooth 
around initialization

f

Algorithmic stability 
[Bousquet & Elisseeff ’02]



Proof ideas
• Step #2: “turn off” algorithmic stability

learning algorithm is -stable  
if replacing one sample in  
➜  change in output ( ) 

Roughly: 
-stability  ➜   gen-gap

δ
S

δ ŵ

δ O(δ)

If  is sufficiently smooth (with )   
➜ SGD is -stable [Hardt, Recht, Singer ’16]

f β ≤ 1/η
η

 should be highly non-smooth 
around initialization

f

Algorithmic stability 
[Bousquet & Elisseeff ’02]

Allows for large SGD steps,  
potentially towards w𝖻𝖺𝖽



w𝖻𝖺𝖽 ∈ U

• Large subgradients at init due to non-smoothness

• Many subgradients, few of them aligned with  …w𝖻𝖺𝖽

w0

η

h(w) = max
u∈U

⟨w, u⟩

Turn off algorithmic stability

variant of 
“Nemirovski’s function”



Proof ideas

• Step #3: use instability to steer SGD towards w𝖻𝖺𝖽

w𝖻𝖺𝖽 ∈ U



Proof ideas

• Step #3: use instability to steer SGD towards w𝖻𝖺𝖽

‣ “Cheat” with sample dependent subgradient 
oracle

w𝖻𝖺𝖽 ∈ U



Proof ideas

• Similar idea used implicitly in prior work [Amir, K, Livni ’21],  [K, Livni, Mansour, 
Sherman ’21], [Schliserman, Sherman, K ’24], …

• Formalized nicely as a reduction by [Livni ’24]

• Step #3: use instability to steer SGD towards w𝖻𝖺𝖽

‣ “Cheat” with sample dependent subgradient 
oracle

‣ Cheat can be removed by memorizing samples 
into SGD iterate

‣ Construction can be made differentiable  
(unique subgradient at every point)

w𝖻𝖺𝖽 ∈ U



• Two generalization mechanisms at play:  
uniform convergence and algorithmic stability 

• Once “turned off”, overfitting/underfitting can occur

• Regret remains controlled, but doesn’t control 
generalization (gap)!

• Construction induces “memorization” of training 
samples into SGD iterate

• Memorizing (say) half of sample suffices

Proof takeaways

w

̂F



What happens after the first pass? 

(aka beyond online-to-batch regime)



Multi-pass SGD

One-pass SGD
Optimal rate in SCO

Multi-pass SGD
Common in practice 

Less understood[Nemirovsky & Yudin ’83]



with standard step size of  , optimal after one pass.

 What happens if we keep training for more epochs?

η = 1/ n

Multi-Pass SGD in SCO



𝛀(𝟏)

Multi-Pass SGD in SCO

Our result:  
 population loss after just 
one additional pass

𝛀(𝟏)

with standard step size of  , optimal after one pass.

 What happens if we keep training for more epochs?

η = 1/ n



Tight bounds for Multi-Pass SGD

Multi-pass SGD (without-replacement):

 population loss from the (end of the) 2nd epoch onward

With-replacement SGD:

 population loss after  steps (i.e.  “passes”)

(thanks to coupon collector)

Matching upper bounds
Via algorithmic stability arguments

Ω (η T + ηT
n

+ 1
ηT )

Ω (η T + ηT
n

+ 1
ηT ) Θ(n log n) log n

[Vansover-Hager, K, Livni ’25]



 
for different stepsizes η

Tight bounds for Multi-Pass SGD



• GD observes the entire sample each step → overfitting may occur   
[Amir, K, Livni ’21,  Schliserman, Sherman, K ’24,  Livni ’24] 

• SGD doesn't observe the entire training set in first pass → no overfitting

Multi-pass SGD: proof ideas



• GD observes the entire sample each step → overfitting may occur   
[Amir, K, Livni ’21,  Schliserman, Sherman, K ’24,  Livni ’24] 

• SGD doesn't observe the entire training set in first pass → no overfitting

Multi-pass SGD: proof ideas

• Key idea: use first pass to “touch” and 
memorize entire sample

• Construct loss function s.t. SGD steps  
 remain at init while memorizing

• Once sample has been memorized, 
overfitting starts

≈



• Classical SGD doesn’t “fit” in conventional  
statistical learning theory

• Perspective to contemporary discussion on  
generalization in modern ML

• Emerging picture: first pass is in “regret regime”, 
later passes governed by algorithmic stability

• More results for (full batch) Gradient Descent, 
more general full-batch methods, Sharpness-aware 
algorithms (SAM), … 

Takeaways

❓



• Classical SGD doesn’t “fit” in conventional  
statistical learning theory

• Perspective to contemporary discussion on  
generalization in modern ML

• Emerging picture: first pass is in “regret regime”, 
later passes governed by algorithmic stability

• More results for (full batch) Gradient Descent, 
more general full-batch methods, Sharpness-aware 
algorithms (SAM), … 

Takeaways

Thanks!

❓


