Beyond Online-to-Batch: Exploring the
Generalization Ability of (Convex) SGD
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Disclaimer

No new (faster/better/...) algorithms

No new framework/model/setting

new aspects, perspectives, discoveries
about already great algorithms

in an already great setting



Outline

Revisit a fundamental result, from statistical learning perspective:

out-of-sample performance of SGD is minimax optimal in convex optimization

population
loss

optimal

one pass

Problem
Complexity and
Method
Efficiency in
Optimization

[Nemirovsky &
Yudin ’83]

A.S.Nemirovsky and D.B.Yudin

modern view: direct consequence of
regret + online-to-batch conversion
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Revisit a fundamental result, from statistical learning perspective:

out-of-sample performance of SGD is minimax optimal in convex optimization

® What form of capacity control enables

lati : . .
popron this generalization ability?

loss
® |n what rate does SGD optimizes the
training loss / empirical risk?

® What happens after the first pass!?

train? o (aka beyond regret minimization regime)
optima

one pass
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Setup: Stochastic Convex Optimization (SCO)

loss func.

e Convex, |-Lipschitz loss f(w, 2)

v
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® (Goal: minimize population/true risk:

data dit. 5 l-ata
e Access to sample S = {z,...,2,} ~;; D (unknown) sample

c R4



Setup: Stochastic Convex Optimization (SCO)

loss func.

Convex, |-Lipschitz loss f(w, 2)

v
e o
ST
o

F(w) = [Ez [f(’ ]

Goal: minimize population/true risk:

data dit. 5 l-ata
Access to sample S = {z;,...,2,} ~;:; D (unknown) sample
e R
Empirical risk: ® Generalization gap:

A 1 ¢ A
Fow) =— D fw,2) A(w) = F(w) = F(w)
=1



Generalization in SCO is (still) compelling

® Fundamental in optimization, extremely well studied

® Home to common, real-world algorithms (incl. SGD)

Springer Series
Operations Res:

® Global optimization is “easy’—allows isolating generalizatio

Jorge Nocedal
Stephen J. Wright

Second Edition




Generalization in SCO is (still) compelling

® Fundamental in optimization, extremely well studied

® Home to common, real-world algorithms (incl. SGD)

Springer Series
Operations Res:

® Global optimization is “easy’—allows isolating generalizatio

Jorge Nocedal
Stephen J. Wright

Second Edition

® Generalization in SCO known to be algorithm-dependent P

(unlike in other classical models: PAC, GLMs, ...)
[Shalev-Shwartz, Shamir, Srebro, Sridharan 09]

® |nstructive to demonstrate interesting (generalization)
phenomena in simple cases




SGD is minimax optimal in SCO

Problem
Complexity and
Method
Efficiency In
Optimization

[Nemirovsky & Yudin ’83]

A S.Nemirovsky and D.B.Yudin
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® [Theorem:
[IN&Y ’83]

® Bound is minimax optimal up to constants, independent of dimension

® Modern view: consequence of regret + online-to-batch conversion

® Many extensions: other geometries (mirror descent), adaptive versions, ...
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Complexity and
Method

Efficiency in

Proof from the book Compe

Optimization

SGD % Wi = W — N8 5 [gt ‘ Wt] = VF (Wt) 3

w1, — w2 < [l = w2 = 2ng, - O, = w5) + g1

(I = w4112 = I = w*1%) + -G (llg/l < 6)

1 « 1 . .
— 2 g, (Wt — w¥) < le _ W>1<H2 4 ~G? (online gradient descent
n- 2nn 2 regret bound)
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Proof from the book Pt
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What form of capacity control is at play?



Capacity control

“with too much fitting,
the model adapts itself
too closely to the
training data, and

ol 7 O 0 will not generalize well”
o The Elements of
| “‘underfitting” » Statistical Learning
[Hastie-Tibshirani-
0 | 0 1 Friedman ’09]

controlled

1_

model capacity

)

—1F

“bad
.1} overfitting”

‘\I\III uncontrolled
| 7 model capacity




Capacity control <= Generalization Bounds

test-error < ftrain-error + |generalization-gapl|

A A A A capacit
C[FOv) — F*] < E[F(W)—F*] + copntro{
VC / Rademacher bounds [Vapnik "71,Valiant "84, Bartlett et al.’02, ...]
Algorithmic stability [Bousquet & Elisseeff 02, Hardt et al. " 16, ...]
PAC-Bayes [McAllester '99; Dziugaite and Roy ’18, ...] “Laws of Large
, | , , Numbers
Sample compression [Littlestone & VWarmuth '86; Arora et al.’ |8, ...] approach”

Information-theoretic bounds [Xu & Raginsky "I 7, Neu "21, ...]

More recently: Implicit bias, interpolating algorithms, benign overfitting, ...



SGD’s generalization gap?

loss

train?

test I gap7
SGD steps

test-error < |train-error| + |gen-gap|

O(1/+/n) ? ?



: . (one pass) SGD
SGD doesn’t generalize Weer = Ty, = 1 Vfv, 2)
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Theorem: ddist. D and convex, |-Lipschitz loss f(w, 2)
¢ over W = {unit ball in R%} in dim d = O(n)
s.t. for SGD “from the book™ (one pass, 7 = 1/\/5):

. True risk is (optimally) small: [F(W) — F*] [N&Y ’83]

L
2. Empirical risk is (trivially) large: [F(W) — F*] 1

3. Gen-gap is (trivially) large: - [ Fow) — F(vAv)] >
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e K, Livni, Mansour, Sherman ’22; Schliserman, Sherman, K ’25; Vansover-Hager, K, Livni ’25



“Benign Underfitting”

loss train

8ap

test

SGD steps

test-error < |train-error| + |gen-gap|

O(1/+\/n) Q(1) Q(1)



“Benign Underfitting”

e “Laws of Large Numbers

loss train )
approach” fails for SGD
® Even in most basic, fundamental
gap setup (convex optimization)
test
SGD steps

test-error < |train-error| + |gen-gap|

O(1/\/n) Q(1) Q(1)



“Benign Underfitting”

loss o “Laws of Large Numbers

train .
approach” fails for SGD
® Even in most basic, fundamental
gap setup (convex optimization)
test
® Out-of-sample performance (only?)
explained by stochastic approx./
SGD steps P / PP

regret analysis

test-error < |train-error| + |gen-gap| e No (effective) “implicit bias”

O(1/\/n) Q(1) Q(1)



Contemporary wisdom: “Implicit bias™

~. Generalization

N

A Sy s [Fw®) = Fw™)

min F(W) P . ) w*EH,,
| Y4 S
H~ ~--’ set of ‘ ‘
. ale  simple” gen-gap
train-loss & odels

® Modern belief: common optimization algorithms are implicitly biased

towards “simple” models, thus generalize

® “Simple” is e.g.: low norm, sparse, low-rank, short MDL, ...



loss

“Benign Underfitting”

train

gap | (1)

test

SGD steps

No implicit bias
(for SGD in SCO)

Fw) — F(w)

is large at
SGD solution



(one pass) SGD
More generally Weet = Hylw, — n Vw,, 2)]
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\". Theorem: V n,n > 0, ddist. D and convex, |-Lipschitz f(w, z)
j over W = {unit ball in R% in dim d = O(n)
s.t. for SGD with any n > O:

. C A ~ , 1
|.  Empirical risk is large: E|FOV) — F*| 2 mm{n n -+ , 1}
m/n

2. Gen-gap is large: E|[FG) - FOv)| 2 min{'”l n+ : »1}

° Sy LB e VA ST 3 o T LS Ty DB ITC TS AR /8
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(= E.g.implies that gen-gap is trivially large unless n = €2(d)

(= Dim dependence is ~optimal: when d = o(n) uniform convergence kicks in



Proof ideas

o Step #I:"turn off” uniform convergence

sup | F(w) — F(w)| < \ﬁ
weW n

(laws of large numbers)



Proof ideas

o Step #I:"turn off” uniform convergence

________________ e > UC rate is O(v/d/n)

" —> work in dimension d = Q(n)

. d
sup | F(w) — F(w)| < \ﬁ
wew t » Show that 3 wPd e W

(laws of large numbers) with large generalization gap



Turn off uniform convergence

1 =1 I =d
<1 0 0 | 0 | 0 |
| | 0 | | 0
e | 0 | 0 | | I

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]



Z, | 0 | 0

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]




Turn off uniform convergence

Zi 0 0 | 0 0 |
| | | 0 | 0 d ,
fw,2) = ) 2(iw(i)
=1
convex, Lipschitz
(over unit ball)
Z, | 0 | 0 | |

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]



Turn off uniform convergence

<1 0 0 | 0
% | | | 0 d Nz
fw,2) = ) 2(iw(i)
=1
convex, Lipschitz
(over unit ball)
Z, | 0 | 0

Fle) =1

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]



Turn off uniform convergence

Zi 0 0 | 0 0 |
Z | | | 0 | 0 d N
fw,2) = ) 2(iw(i)
=1
convex, Lipschitz
(over unit ball)
Z, | 0 | 0

[Shalev-Shwartz, Shamir, Srebro, Sridharan ’09]



Turn off uniform convergence

e Construction of f, D requires dimension d > 2°". .

2" orthogonal
directions in d = 2"



Turn off uniform convergence

e Construction of f, D requires dimension d > 2°". .

U
(u, ')
2" orthogonal exp(n) nearly orthogonal
directions in d = 2" directions in d = O(n)

[Feldman | 6]
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Proof ideas

® Step #2:"turn off” algorithmic stability

i Algorithmic stability |
. [Bousquet & Elisseeff ’02]

learning algorithm is 0-stable

¥

if replacing one sample in §

=>» 6 change in output (W)

Roughly:

6'Stab|l|ty -> 0 (5) gen_gap ‘

o=~ o



Proof ideas

® Step #2:"turn off” algorithmic stability

If fis sufficiently smooth (with f < 1/7)
=» SGD is 1-stable [Hardt, Recht, Singer ’16]

{ Algorithmic stability
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Proof ideas

® Step #2:"turn off” algorithmic stability

If fis sufficiently smooth (with f < 1/7)
=» SGD is 1-stable [Hardt, Recht, Singer ’16]

i Algorithmic stability l
f [Bousquet & Elisseeff ’02] §

learning algorithm is o-stable f should be highly non-smooth
if replacing one sample in § # around initialization

=>» 6 change in output (W)

Roughly:
5-Stabl|lt)' -> 0 (5) gen_gap ‘



Proof ideas

® Step #2:"turn off” algorithmic stability

If fis sufficiently smooth (with f < 1/7)
=» SGD is 1-stable [Hardt, Recht, Singer ’16]

i Algorithmic stability l
f [Bousquet & Elisseeff ’02] §

learning algorithm is o-stable f should be highly non-smooth
if replacing one sample in ? # around initialization
=» 0 change in output (W) l
Roughly:

I 5-stability = O(5) gen-gap | Allows for large SGD steps,

potentially towards w°



Turn off algorithmic stability

h(w) = max{(w, u)
uel

variant of
“Nemirovski’s function”

® | arge subgradients at init due to non-smoothness

e Many subgradients, few of them aligned with w9 ...



Proof ideas

d

o Step #3: use instability to steer SGD towards w®°
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o Step #3: use instability to steer SGD towards w®°

> “Cheat” with sample dependent subgradient
oracle




Proof ideas

e Step #3: use instability to steer SGD towards w°*

> “Cheat” with sample dependent subgradient
oracle

> Cheat can be removed by memorizing samples
into SGD iterate

» Construction can be made differentiable
(unique subgradient at every point)

e Similar idea used implicitly in prior work [Amir, K, Livni "21], [K, Livni, Mansour,
Sherman ’21], [Schliserman, Sherman, K '24], ...

® Formalized nicely as a reduction by [Livni "24]



Proof takeaways

Two generalization mechanisms at play:
uniform convergence and algorithmic stability

Once “turned off”, overfitting/underfitting can occur

Regret remains controlled, but doesn’t control
generalization (gap)!

Construction induces “memorization” of training
samples into SGD iterate

Memorizing (say) half of sample suffices




What happens after the first pass!?

(aka beyond online-to-batch regime)



Multi-pass SGD

One-pass SGD w l Multi-pass SGD
Optimal rate in SCO o Common in practice

[Nemirovsky & Yudin ’83] Less understood

o e
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Multi-Pass SGD in SCO

with standard step size of 1 = 1/\/; , optimal after one pass.

What happens if we keep training for more epochs!?

W
]

N)
]

Population Loss

Number of Epochs



Multi-Pass SGD in SCO

with standard step size of 1 = 1/\/; , optimal after one pass.

What happens if we keep training for more epochs!?

4_

Our result:
Q(1) population loss after just
one additional pass

W
]

N
]

Population Loss

Number of Epochs



Tight bounds for Multi-Pass SGD

Multi-pass SGD (without-replacement):

nt 1 .
9) nﬁ + . + ﬁ population loss from the (end of the) 2nd epoch onward

With-replacement SGD:

nl 1 | . ‘ '
9) nﬁ + — + ﬁ population loss after ®(n log n) steps (i.e.log n “passes’)

(thanks to coupon collector)

Matching upper bounds

Via algorithmic stability arguments [Vansover-Hager, K, Livni ’25]



Tight bounds for Multi-Pass SGD

for different stepsizes 7
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Multi-pass SGD: proof ideas

® GD observes the entire sample each step — overfitting may occur
[Amir, K, Livni "21, Schliserman, Sherman, K ’24, Livni '24]

® SGD doesn't observe the entire training set in first pass — no overfitting



GD observes the entire sample each step = overfitting may occur
[Amir, K, Livni "21, Schliserman, Sherman, K ’24, Livni '24]

SGD doesn't observe the entire training set in first pass — no overfitting

Key idea: use first pass to “touch” and
memorize entire sample

Construct loss function s.t. SGD steps
~ remain at init while memorizing

Once sample has been memorized,
overfitting starts

F(we) = F(w’)

Population Loss Across Epochs

Multi-pass SGD: proof ideas

—— SGD: F(w;%P) — F(w*)
— = GD: F(WPP) — F(w")

Number of Epochs

2




Takeaways

Classical SGD doesn’t “fit”’ in conventional
statistical learning theory

Perspective to contemporary discussion on
generalization in modern ML

Emerging picture: first pass is in “regret regime”,
later passes governed by algorithmic stability

More results for (full batch) Gradient Descent,
more general full-batch methods, Sharpness-aware

algorithms (SAM), ...
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