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Motivation

@ This presentation is about better understanding previous results on
Polyak stepsize

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 2 /31



@ This presentation is about better understanding previous results on
Polyak stepsize

@ Polyak stepsize adapts to lipschitzness, strong convexity, smoothness,
sharpness [e.g., Hazan&Kakade, 2019]

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 2 /31



@ This presentation is about better understanding previous results on
Polyak stepsize

@ Polyak stepsize adapts to lipschitzness, strong convexity, smoothness,
sharpness [e.g., Hazan&Kakade, 2019]

o But, why?

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 2 /31



@ This presentation is about better understanding previous results on
Polyak stepsize

@ Polyak stepsize adapts to lipschitzness, strong convexity, smoothness,
sharpness [e.g., Hazan&Kakade, 2019]

o But, why?

@ In optimization for ML, a convergence rate is rarely predictive of
reality, so the why is actually more important than a non-informative
theorem

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 2 /31



@ This presentation is about better understanding previous results on
Polyak stepsize

@ Polyak stepsize adapts to lipschitzness, strong convexity, smoothness,
sharpness [e.g., Hazan&Kakade, 2019]

o But, why?

@ In optimization for ML, a convergence rate is rarely predictive of
reality, so the why is actually more important than a non-informative
theorem

@ In this talk I'll present a way to truly understand and explain the
behaviour of the Polyak stepsize

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 2 /31



@ This presentation is about better understanding previous results on
Polyak stepsize

@ Polyak stepsize adapts to lipschitzness, strong convexity, smoothness,
sharpness [e.g., Hazan&Kakade, 2019]

o But, why?

@ In optimization for ML, a convergence rate is rarely predictive of
reality, so the why is actually more important than a non-informative
theorem

@ In this talk I'll present a way to truly understand and explain the

behaviour of the Polyak stepsize

@ No really new rates, but many negative results
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The Challenge of Stepsize Selection

Gradient Descent (GD)

The foundational first-order optimization algorithm:

Xer1 = X¢ — N VE(x¢)
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The Challenge of Stepsize Selection

Gradient Descent (GD)

The foundational first-order optimization algorithm:

Xer1 = X¢ — N VE(x¢)

@ The stepsize (or learning rate) n; is critical

@ Tuning 7; often requires knowledge of problem parameters (e.g.,
smoothness constant L, distance to optimum) that are unknown
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Gradient Descent on Smooth f: Step Size Too Small

Function: f(x) = x? f(x)
e Curvature (Smoothness)
L=1 101

@ Step size n =0.3

Observation

The algorithm converges, but
takes many small steps
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Gradient Descent on Smooth f: Step Size Too Large

Function: f(x) = x?
e Curvature (Smoothness)
L=1 20 5
@ Step size n = 2.1
@ This is larger than the 15 |
divergence threshold
\ 10| i

n=2/L=2 b

Observation

Each step overshoots the 5+
minimum by a larger amount,
and the iterates move further
away from the solution
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Gradient Descent on Smooth f: Optimal Constant Step Size

Function: f(x) = x?
@ Curvature (Smoothness)
L=1 10 |

o Optimal step size
n=1/L=1

Observation

This stepsize maximizes the
worst-case decrease of the X
function ‘ ‘ ‘ ‘

2 4
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Gradient Descent on Non-Smooth f

f(x)
Function: f(x) = |x| 10 |
@ Stepsizen =3
Observation 5 |
The learning rate is too large, <
it will oscillate
AN
‘ X
—4 -2 2 4
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Gradient Descent on Non-Smooth f

f(x)
Function: f(x) = |x]| 10 |
@ Stepsizen =.3

Observation 5|

The learning rate is too small,

it will converge very slowly

‘ X
—4 -2 2 4
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Gradient Descent on Non-Smooth f

Function: f(x) = |x]|

@ Optimal step size
> —x*]|

=T

Observation

The optimal learning rate
depends on where you start

10 |
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The "Magic" of the Polyak Stepsize

Proposed by Boris Polyak in 1969, the stepsize is defined as

f(xe) — F*

Xt41 = Xt —
lg:l3

gt7

where g, € 0f (x¢) is a subgradient and f* = miny f(x)
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The "Magic" of the Polyak Stepsize

Proposed by Boris Polyak in 1969, the stepsize is defined as

f(xe) — F*

Xt41 = Xt —
lg:l3

gt7

where g, € 0f(x;) is a subgradient and f* = miny f(x)

Remarkable Adaptivity
A single update rule achieves near-optimal rates for:
o Non-smooth convex functions: O(1/+/T)
@ Smooth convex functions: O(1/T)
@ Smooth & strongly convex functions: Linear convergence

...all without knowing smoothness or strong convexity constants!
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The Central Research Question

Despite a resurgence of interest and many new variants [e.g.,
Rolinek&Martius, NeurlPS'18; Berrada et al., ICML'20; Loizou et al.,
AISTATS'21; Prazeres&Oberman, 2021], a fundamental question remains:

What makes the Polyak stepsize so adaptive, and when can
it fail?

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 11 /31



The Central Research Question

Despite a resurgence of interest and many new variants [e.g.,
Rolinek&Martius, NeurlPS'18; Berrada et al., ICML'20; Loizou et al.,
AISTATS'21; Prazeres&Oberman, 2021], a fundamental question remains:

What makes the Polyak stepsize so adaptive, and when can
it fail?

Our Contributions
@ A new, unified perspective: Polyak's method is just Gradient
Descent on a surrogate function

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 11 /31



The Central Research Question

Despite a resurgence of interest and many new variants [e.g.,
Rolinek&Martius, NeurlPS'18; Berrada et al., ICML'20; Loizou et al.,
AISTATS'21; Prazeres&Oberman, 2021], a fundamental question remains:

What makes the Polyak stepsize so adaptive, and when can
it fail?

Our Contributions
@ A new, unified perspective: Polyak's method is just Gradient
Descent on a surrogate function

@ This surrogate is always locally smooth and we know the
smoothness constant

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 11 /31



The Central Research Question

Despite a resurgence of interest and many new variants [e.g.,
Rolinek&Martius, NeurlPS'18; Berrada et al., ICML'20; Loizou et al.,
AISTATS'21; Prazeres&Oberman, 2021], a fundamental question remains:

What makes the Polyak stepsize so adaptive, and when can
it fail?

Our Contributions

@ A new, unified perspective: Polyak's method is just Gradient
Descent on a surrogate function

@ This surrogate is always locally smooth and we know the
smoothness constant

© We use this framework to analyze a general family of Polyak-like
algorithms

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 11 /31



The Central Research Question

Despite a resurgence of interest and many new variants [e.g.,
Rolinek&Martius, NeurlPS'18; Berrada et al., ICML'20; Loizou et al.,
AISTATS'21; Prazeres&Oberman, 2021], a fundamental question remains:

What makes the Polyak stepsize so adaptive, and when can
it fail?

Our Contributions
@ A new, unified perspective: Polyak's method is just Gradient
Descent on a surrogate function
@ This surrogate is always locally smooth and we know the
smoothness constant
© We use this framework to analyze a general family of Polyak-like
algorithms

@ We prove several negative results, showing that the non-convergence
seen in some analyses is real, not an artifact
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Polyak Stepsize as GD on a Surrogate

Let f be convex with minimizer x*
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Let f be convex with minimizer x*
Instead of minimizing f(x), consider minimizing a new surrogate function:

$0x) = 3 (F(x) — F"))?
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Polyak Stepsize as GD on a Surrogate

Let f be convex with minimizer x*
Instead of minimizing f(x), consider minimizing a new surrogate function:

(F(x) = f(x")*

N

¢(x) =

Key Insight
The subgradient of ¢(x) is Vo (x) = (f(x) — f*)g,, where g, € df(x)

A subgradient step on ¢(x) with stepsize n = W is:
x 112

1

x—nVo(x) =x — —5
W) =X~ 12

(F(x) — )8

This is exactly the Polyak update!

o
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A New Notion of Local Curvature

So, the Polyak stepsize is GD on ¢ with stepsize 7, = 1/|/g./|3. But why is
this a good stepsize?
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A New Notion of Local Curvature

So, the Polyak stepsize is GD on ¢ with stepsize 7, = 1/|/g./|3. But why is
this a good stepsize?

Definition (Local Star Upper Curvature - LSUC)
A function ¢ has A,-LSUC around y if

B(x*) — (Vo(y), x* — y) — %IW(}')\% > 6(y)

@ L-smooth functions are L-LSUC everywhere, in fact convex smooth
functions satisfy

1
F(x) = VE(y), x —y) = 57 [VF(x) — VFE(y)|> = f(y), Vx,y e RY
@ This is a local smoothness-like condition
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The Local Curvature is the Source of Adaptivity

Theorem 1: Curvature of the Polyak Surrogate

For any f convex, the surrogate ¢(x) = %(f(x) —*)?is ||g,]5-LSUC
around any x
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The Local Curvature is the Source of Adaptivity

Theorem 1: Curvature of the Polyak Surrogate

For any f convex, the surrogate ¢(x) = %(f(x) —*)?is ||g,]5-LSUC
around any x

@ This is the magic! The surrogate ¢ is always “locally smooth”

o The adaptive stepsize 1/|g,|3 is simply the inverse of this local
curvature constant!
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Non-smooth: Choice of Stepsize is Difficult

10 |
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Smooth: Choice of Stepsize is Easy, Knowing Smoothness
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Recovering Convergence Rates

Using this perspective, we can easily derive convergence guarantees

Lemma (One-step Progress)

Using stepsize 17, = 1/, = 1/]g.||3 on ¢ gives:

* 1 * ]' *
0 (B(xe) = 6(x)) < 5 llxe = x5 = Sfxern = x7[3
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Recovering Convergence Rates

Using this perspective, we can easily derive convergence guarantees

Lemma (One-step Progress)

Using stepsize 17, = 1/, = 1/]g.||3 on ¢ gives:

* 1 * ]' *
0 (B(xe) = 6(x)) < 5 llxe = x5 = Sfxern = x7[3

Summing over T steps:
quﬁ Xt) —Hxl—x I3

e If fis G-Lipschitz: Y0} > T/G? = ¢(x1) = O(1/T)
o If f is L-self-bounded: We recover ¢(x1) = O(1/T?)

o If f is sharp: We recover linear convergence

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 17 /31



From the Surrogate to the Original Function

@ We can easily convert a rate on the surrogate to a rate on the original
function by inverting the surrogate

@ For example for smooth losses we have

f(x) =/2¢(x) =4/O(1/T?) = O(1)T)
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Not a Completely New Idea

@ Gower et al. [ArXiv'21] showed that the stochastic Polyak stepsize can
be casted as online convex optimization problem on surrogate losses

@ The adversarial nature of online convex optimization means that it is
not possible to say that we are minimizing a specific function

@ For the same reason, they need slightly stronger assumptions
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A Family of Surrogates

We can generalize this idea beyond knowing *

General Surrogate

Consider (x) = %hz(x), where h: RY — R~q is convex
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A Family of Surrogates

We can generalize this idea beyond knowing *

General Surrogate

Consider (x) = %hz(x), where h: RY — R~q is convex

Examples of h(x):
@ Original Polyak: h(x) = f(x) — f*
@ Unknown f*: h(x) = (f(x) — ¢)+ for some estimate ¢

e Stochastic Variants, for example, SPS [Garrigos et al., 2023]:
h(X,E) = |f(X,£) - f(X*)£)|+
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A Family of Surrogates

We can generalize this idea beyond knowing *

General Surrogate

Consider (x) = %hz(x), where h: RY — R~q is convex

Examples of h(x):
@ Original Polyak: h(x) = f(x) — f*
@ Unknown f*: h(x) = (f(x) — ¢)+ for some estimate ¢

e Stochastic Variants, for example, SPS [Garrigos et al., 2023]:
h(X,g) = ’f(x’g) - f(X*)£)|+

Problem

If the minimum of h is not zero (i.e., h(x*) > 0), the surrogate only has
approximate local curvature. This leads to convergence to a
neighborhood, not the true optimum.
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The Stochastic Setting

Consider minimizing F(x) = E¢.p[f(x,§)].

Stochastic Polyak variants use a surrogate based on a single sample &,:
1h(x,€,), and update with

2 'St/ p

Xty1 = Xt — neh(xe, €,)g,, where g, € 0h(x,&,)
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The Stochastic Setting

Consider minimizing F(x) = E¢.p[f(x,§)].
Stochastic Polyak variants use a surrogate based on a single sample &,:
%h(x,ét), and update with

Xty1 = Xt — neh(xe, €,)g,, where g, € 0h(x,&,)

A Fundamental Mismatch
The algorithm is effectively minimizing the expectation of the surrogate:

1
E¢~p [ﬁhz(",ﬁ)]
This is generally not the same as minimizing the original objective F(x)!

argmin E[h?(x,&)] # argmin E[f(x, )]

X
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The Stochastic Setting

Consider minimizing F(x) = E¢.p[f(x,§)].
Stochastic Polyak variants use a surrogate based on a single sample &,:
%h(x,ﬁt), and update with

Xty1 = Xt — neh(xe, €,)g,, where g, € 0h(x,&,)

A Fundamental Mismatch
The algorithm is effectively minimizing the expectation of the surrogate:

1
E¢~p [ﬁhz(",ﬁ)]
This is generally not the same as minimizing the original objective F(x)!

argmin E[h?(x,&)] # argmin E[f(x, )]

X

Warning: Minimizing a different loss function is problematic for a

ML point of view
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Unified Analysis of Stochastic Variants

We propose a generalized algorithm with a clipped stepsize, covering
methods like SPSmax, SPSy, etc.

1: fort=1,..., T do

2 Sample &,

3:  Get subgradient g, € dh(x¢,&,)
4 ny =min (m, 7,7()(1&)

5 Xt+1 = Xt — Neh(xt,§:)8+

6: end for
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General Convergence Guarantees

@ Let H(x) = Egp[h(x,&)]. If h(-,&,) is L-self bounded, we have

< Pa=x? .
min <2L’7> ZE T + 2vH(x*)

.

= — —= o
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General Convergence Guarantees

@ Let H(x) = Egp[h(x,&)]. If h(-,&,) is L-self bounded, we have

HX]-_X*H2 *
min <2L’7> ZE T + 2vH(x*)

@ If h(-,&,) is G-Lipschitz, then we have

4 i E[H(x;)] < M +2H(x*) + Glxs —x*| + G+/2vH(x*)
T4 ~T VT

.
= — — = — et
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General Convergence Guarantees

@ Let H(x) = Egp[h(x,&)]. If h(-,&,) is L-self bounded, we have

|X —x* |2 *
min <2L’7> ZE %+27H(x)
o If h(-,&,) is G-Lipschitz, then we have
4 ET: E[H(x;)] < M +2H(x*) + Glxs —x*| + G+/2vH(x*)
T4 <oy oo
o If h(-,&) is L-self-bounded and H(x) has p-quadratic growth, then
E[|x7+1 — x*[2] SE[|x1 — x*[?]a"** + b%aH(x*),

where a = & min (57,7) and b = 2y — min (3;,7)

= — — = — AN
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When Things Go Wrong: h(x*) > 0

What happens when the minimum of our surrogate-generator h is strictly
positive?
e Deterministic case: We underestimate * (e.g., h(x) = f(x) — ¢
with ¢ < )

@ The correct stepsize for the underlying surrogate 1) = %(h — h*)?is
)\%, but the algorithm uses a stepsize for %hzz

= (i 25 ),
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When Things Go Wrong: h(x*) > 0

What happens when the minimum of our surrogate-generator h is strictly
positive?
e Deterministic case: We underestimate * (e.g., h(x) = f(x) — ¢
with ¢ < )

@ The correct stepsize for the underlying surrogate 1) = %(h — h*)?is
)\%, but the algorithm uses a stepsize for %hzz

= (i 25 ),

Problem

h(f{i’)‘f_)h* blows up to

+oo! The stepsize becomes enormous near the minimum, causing
instability. Moreover, clipping will not fix this issue.

As x; — x*, we have h(x;) — h* > 0. The term
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Unstable Fixed Points

This intuition is formalized in following Proposition

Proposition (Unstable Fixed Point)

For a wide class of functions h (e.g., self-bounded with quadratic growth),
if h(x*) > 0, then the minimizer x* is an unstable fixed point.

There exists a neighborhood around x* where if you enter, the next step
will take you further away from x*.
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Unstable Fixed Points

This intuition is formalized in following Proposition

Proposition (Unstable Fixed Point)

For a wide class of functions h (e.g., self-bounded with quadratic growth),
if h(x*) > 0, then the minimizer x* is an unstable fixed point.

There exists a neighborhood around x* where if you enter, the next step
will take you further away from x*.

@ This confirms that the neighborhood of non-convergence is not just an
artifact of the analysis
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Cycling of the lterates

This instability can lead to more than just a failure to converge; it can lead
to cycles

Proposition (Cycling)

Consider the simple 1D function h(x) = x> + 1. Here h* =1 > 0. There
exists an initial point x; such that the update rule

)
1 =5 [ )

cycles on points different than x* = 0. Moreover, the suboptimality on the
average of the iterates also fails to converge.
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Proof by Gemini 2.5

The update is

et — h(xt) _ xZ+1  xF-1
T Vh(x) B
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Proof by Gemini 2.5

The update is

_ h(x)
[Vh(x)l3

241 21
Vh(Xt):Xt—Xt + = Xt

2Xt 2Xt

Xt+1 = Xt

If we start at x; = cot(6), from the identity of cot(2x) = Cgtsoet_el
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Proof by Gemini 2.5

The update is

h(xt) 2+1 x2-1
= — —) T h(x) = xe — -
Xt+1 Xt th(Xt)”% (Xt) Xt 2Xt 2Xt

If we start at x; = cot(#), from the identity of cot(2x) = Cgtjoet_el
Hence, set x; = cot /7, to have

x; = cot(m/7) — xo = cot(27/7) — x3 = cot(4n/7) — xa = x1
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The Set of Good Initial Point has Measure Zero

@ In the previous Proposition we found a very specific initial point such
that the algorithm cycles

@ Was it just a very unlucky initial point?
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The Set of Good Initial Point has Measure Zero

@ In the previous Proposition we found a very specific initial point such
that the algorithm cycles

@ Was it just a very unlucky initial point?

Proposition

For h(x) = x?/2 + a, the set of initial points where the update

Xpr1l = X¢ — MVh(xt) converges to the minimum has measure zero

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 28 /31



Failure in the Stochastic Case

Proposition

There exist f; and f, quadratic 1-d functions and a starting point x; such
that SPS on F(x) = 0.5(f1(x) + f2(x)) satisfies

E[F(xt)] — mXin F(x) =2/3, Vt
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Summary and Takeaways

The Good: A Unifying Perspective
@ The Polyak stepsize is equivalent to GD on a surrogate
Bx) = 3(F — £+
@ The adaptivity comes from the fact that ¢ is always locally “smooth”
with a known curvature constant |g||3

@ This framework simplifies and unifies the analysis of many Polyak-like
methods

Orabona & D'Orazio New Perspectives on the Polyak Stepsize 30 /31



Summary and Takeaways
The Good: A Unifying Perspective

@ The Polyak stepsize is equivalent to GD on a surrogate
o(x) = 3(f = £*)?

@ The adaptivity comes from the fact that ¢ is always locally “smooth”
with a known curvature constant |g|3

@ This framework simplifies and unifies the analysis of many Polyak-like
methods

The Bad: Fundamental Instability

@ When the surrogate’'s minimum value is positive (e.g., f*
underestimated or no interpolation), the dynamics change drastically

@ The algorithm becomes unstable near the optimum, leading to cycles
and non-convergence

@ This neighborhood of convergence is not an analysis artifact but a
fundamental property of the method
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