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Motivation

This presentation is about better understanding previous results on
Polyak stepsize

Polyak stepsize adapts to lipschitzness, strong convexity, smoothness,
sharpness [e.g., Hazan&Kakade, 2019]
But, why?
In optimization for ML, a convergence rate is rarely predictive of
reality, so the why is actually more important than a non-informative
theorem

In this talk I’ll present a way to truly understand and explain the
behaviour of the Polyak stepsize
No really new rates, but many negative results
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The Challenge of Stepsize Selection

Gradient Descent (GD)
The foundational first-order optimization algorithm:

x t`1 “ x t ´ ηt∇f px tq

The stepsize (or learning rate) ηt is critical

Tuning ηt often requires knowledge of problem parameters (e.g.,
smoothness constant L, distance to optimum) that are unknown
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Gradient Descent on Smooth f : Step Size Too Small

Function: f pxq “ 1
2x

2

Curvature (Smoothness)
L “ 1
Step size η “ 0.3

Observation
The algorithm converges, but
takes many small steps
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Gradient Descent on Smooth f : Step Size Too Large

Function: f pxq “ 1
2x

2

Curvature (Smoothness)
L “ 1
Step size η “ 2.1
This is larger than the
divergence threshold
η “ 2{L “ 2

Observation
Each step overshoots the
minimum by a larger amount,
and the iterates move further
away from the solution
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Gradient Descent on Smooth f : Optimal Constant Step Size

Function: f pxq “ 1
2x

2

Curvature (Smoothness)
L “ 1
Optimal step size
η “ 1{L “ 1

Observation
This stepsize maximizes the
worst-case decrease of the
function
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Gradient Descent on Non-Smooth f

Function: f pxq “ |x |

Step size η “ 3

Observation
The learning rate is too large,
it will oscillate
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Gradient Descent on Non-Smooth f

Function: f pxq “ |x |

Step size η “ .3

Observation
The learning rate is too small,
it will converge very slowly
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Gradient Descent on Non-Smooth f

Function: f pxq “ |x |

Optimal step size
η “

}x1´x‹}
?
T

Observation
The optimal learning rate
depends on where you start
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The “Magic” of the Polyak Stepsize

Proposed by Boris Polyak in 1969, the stepsize is defined as

x t`1 “ x t ´
f px tq ´ f ‹

}g t}
2
2

g t ,

where g t P Bf px tq is a subgradient and f ‹ “ minx f pxq

Remarkable Adaptivity
A single update rule achieves near-optimal rates for:

Non-smooth convex functions: Op1{
?
T q

Smooth convex functions: Op1{T q

Smooth & strongly convex functions: Linear convergence
...all without knowing smoothness or strong convexity constants!
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The Central Research Question

Despite a resurgence of interest and many new variants [e.g.,
Rolinek&Martius, NeurIPS’18; Berrada et al., ICML’20; Loizou et al.,
AISTATS’21; Prazeres&Oberman, 2021], a fundamental question remains:

What makes the Polyak stepsize so adaptive, and when can
it fail?

Our Contributions

1 A new, unified perspective: Polyak’s method is just Gradient
Descent on a surrogate function

2 This surrogate is always locally smooth and we know the
smoothness constant

3 We use this framework to analyze a general family of Polyak-like
algorithms

4 We prove several negative results, showing that the non-convergence
seen in some analyses is real, not an artifact
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Polyak Stepsize as GD on a Surrogate

Let f be convex with minimizer x‹

Instead of minimizing f pxq, consider minimizing a new surrogate function:

ϕpxq “
1
2

pf pxq ´ f px‹qq
2

Key Insight
The subgradient of ϕpxq is ∇ϕpxq “ pf pxq ´ f ‹qg x , where g x P Bf pxq

A subgradient step on ϕpxq with stepsize η “ 1
}gx }2

2
is:

x ´ η∇ϕpxq “ x ´
1

}gx}2
2

pf pxq ´ f ‹qgx

This is exactly the Polyak update!
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A New Notion of Local Curvature

So, the Polyak stepsize is GD on ϕ with stepsize η1
t “ 1{}g t}

2
2. But why is

this a good stepsize?

Definition (Local Star Upper Curvature - LSUC)
A function ϕ has λy -LSUC around y if

ϕpx‹q ´ x∇ϕpyq, x‹ ´ yy ´
1

2λy
}∇ϕpyq}2

2 ě ϕpyq

L-smooth functions are L-LSUC everywhere, in fact convex smooth
functions satisfy

f pxq ´ x∇f pyq, x ´ yy ´
1
2L

}∇f pxq ´ ∇f pyq}2 ě f pyq, @x , y P Rd

This is a local smoothness-like condition
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The Local Curvature is the Source of Adaptivity

Theorem 1: Curvature of the Polyak Surrogate

For any f convex, the surrogate ϕpxq “ 1
2pf pxq ´ f ‹q2 is }g x}2

2-LSUC
around any x

This is the magic! The surrogate ϕ is always “locally smooth”
The adaptive stepsize 1{}g t}

2
2 is simply the inverse of this local

curvature constant!
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Non-smooth: Choice of Stepsize is Difficult
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Smooth: Choice of Stepsize is Easy, Knowing Smoothness
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Recovering Convergence Rates

Using this perspective, we can easily derive convergence guarantees

Lemma (One-step Progress)

Using stepsize η1
t “ 1{λx t “ 1{}g t}

2
2 on ϕ gives:

η1
t pϕpx tq ´ ϕpx‹qq ď

1
2

}x t ´ x‹}2
2 ´

1
2

}x t`1 ´ x‹}2
2

Summing over T steps:

T
ÿ

t“1

η1
tϕpx tq ď

1
2

}x1 ´ x‹}2
2

If f is G -Lipschitz:
ř

η1
t ě T {G 2 ñ ϕpx̄T q “ Op1{T q

If f is L-self-bounded: We recover ϕpx̄T q “ Op1{T 2q

If f is sharp: We recover linear convergence
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From the Surrogate to the Original Function

We can easily convert a rate on the surrogate to a rate on the original
function by inverting the surrogate
For example for smooth losses we have

f pxq ´ f px‹q “
a

2ϕpxq “

b

Op1{T 2q “ Op1{T q
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Not a Completely New Idea

Gower et al. [ArXiv’21] showed that the stochastic Polyak stepsize can
be casted as online convex optimization problem on surrogate losses
The adversarial nature of online convex optimization means that it is
not possible to say that we are minimizing a specific function
For the same reason, they need slightly stronger assumptions
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A Family of Surrogates

We can generalize this idea beyond knowing f ‹

General Surrogate

Consider ψpxq “ 1
2h

2pxq, where h : Rd Ñ Rě0 is convex

Examples of hpxq:
Original Polyak: hpxq “ f pxq ´ f ‹

Unknown f ‹: hpxq “ pf pxq ´ cq` for some estimate c

Stochastic Variants, for example, SPS` [Garrigos et al., 2023]:
hpx , ξq “ |f px , ξq ´ f px‹, ξq|`

Problem
If the minimum of h is not zero (i.e., hpx‹q ą 0), the surrogate only has
approximate local curvature. This leads to convergence to a
neighborhood, not the true optimum.
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The Stochastic Setting

Consider minimizing F pxq “ Eξ„Drf px , ξqs.
Stochastic Polyak variants use a surrogate based on a single sample ξt :
1
2hpx , ξtq, and update with

x t`1 “ x t ´ ηthpx t , ξtqg t , where g t P Bhpx , ξtq

A Fundamental Mismatch
The algorithm is effectively minimizing the expectation of the surrogate:

Eξ„D

„

1
2
h2px , ξq

ȷ

This is generally not the same as minimizing the original objective F pxq!

argmin
x

Erh2px , ξqs ‰ argmin
x

Erf px , ξqs

Warning: Minimizing a different loss function is problematic for a
ML point of view
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Warning: Minimizing a different loss function is problematic for a
ML point of view

Orabona & D’Orazio New Perspectives on the Polyak Stepsize
Workshop on Regret, Optimization, and Games, 2025
21 / 31



The Stochastic Setting

Consider minimizing F pxq “ Eξ„Drf px , ξqs.
Stochastic Polyak variants use a surrogate based on a single sample ξt :
1
2hpx , ξtq, and update with

x t`1 “ x t ´ ηthpx t , ξtqg t , where g t P Bhpx , ξtq

A Fundamental Mismatch
The algorithm is effectively minimizing the expectation of the surrogate:

Eξ„D

„

1
2
h2px , ξq

ȷ

This is generally not the same as minimizing the original objective F pxq!

argmin
x

Erh2px , ξqs ‰ argmin
x

Erf px , ξqs

Warning: Minimizing a different loss function is problematic for a
ML point of view

Orabona & D’Orazio New Perspectives on the Polyak Stepsize
Workshop on Regret, Optimization, and Games, 2025
21 / 31



Unified Analysis of Stochastic Variants

We propose a generalized algorithm with a clipped stepsize, covering
methods like SPSmax, SPS+, etc.
1: for t “ 1, . . . ,T do
2: Sample ξt
3: Get subgradient g t P Bhpx t , ξtq

4: ηt “ min
´

1
}g t}

2
2
, γ
hpx t ,ξtq

¯

5: x t`1 “ x t ´ ηthpx t , ξtqg t

6: end for
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General Convergence Guarantees

Theorem
Let Hpxq “ Eξ„Drhpx , ξqs. If hp¨, ξtq is L-self bounded, we have

min

ˆ

1
2L
, γ

˙

1
T

T
ÿ

t“1

ErHpx tqs ď
}x1 ´ x‹}2

T
` 2γHpx‹q

If hp¨, ξtq is G -Lipschitz, then we have

1
T

T
ÿ

t“1

ErHpx tqs ď
}x1 ´ x‹}2

γT
` 2Hpx‹q `

G}x1 ´ x‹}
?
T

` G
a

2γHpx‹q

If hp¨, ξq is L-self-bounded and Hpxq has µ-quadratic growth, then

E
“

}xT`1 ´ x‹}2‰

ď E
“

}x1 ´ x‹}2‰

aT`1 ` b
1 ´ aT`1

1 ´ a
Hpx‹q,

where a “
µ
2 min

` 1
2L , γ

˘

and b “ 2γ ´ min
` 1

2L , γ
˘
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When Things Go Wrong: hpx‹q ą 0

What happens when the minimum of our surrogate-generator h is strictly
positive?

Deterministic case: We underestimate f ‹ (e.g., hpxq “ f pxq ´ c
with c ă f ‹)
The correct stepsize for the underlying surrogate ψ “ 1

2ph ´ h‹q2 is
1
λt

, but the algorithm uses a stepsize for 1
2h

2:

η1
t “

ˆ

hpx tq

hpx tq ´ h‹

˙

1
λt

Problem

As x t Ñ x‹, we have hpx tq Ñ h‹ ą 0. The term hpx tq

hpx tq´h‹ blows up to
`8! The stepsize becomes enormous near the minimum, causing
instability. Moreover, clipping will not fix this issue.
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Unstable Fixed Points

This intuition is formalized in following Proposition

Proposition (Unstable Fixed Point)
For a wide class of functions h (e.g., self-bounded with quadratic growth),
if hpx‹q ą 0, then the minimizer x‹ is an unstable fixed point.
There exists a neighborhood around x‹ where if you enter, the next step
will take you further away from x‹.

This confirms that the neighborhood of non-convergence is not just an
artifact of the analysis
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Cycling of the Iterates

This instability can lead to more than just a failure to converge; it can lead
to cycles

Proposition (Cycling)

Consider the simple 1D function hpxq “ x2 ` 1. Here h‹ “ 1 ą 0. There
exists an initial point x1 such that the update rule

xt`1 “ xt ´
hpxtq

}∇hpxtq}2
2
∇hpxtq

cycles on points different than x‹ “ 0. Moreover, the suboptimality on the
average of the iterates also fails to converge.
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Proof by Gemini 2.5

The update is

xt`1 “ xt ´
hpxtq

}∇hpxtq}2
2
∇hpxtq “ xt ´

x2
t ` 1
2xt

“
x2
t ´ 1
2xt

If we start at x1 “ cotpθq, from the identity of cotp2xq “ cot2 θ´1
2 cot θ

Hence, set x1 “ cotπ{7, to have

x1 “ cotpπ{7q Ñ x2 “ cotp2π{7q Ñ x3 “ cotp4π{7q Ñ x4 “ x1
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The Set of Good Initial Point has Measure Zero

In the previous Proposition we found a very specific initial point such
that the algorithm cycles
Was it just a very unlucky initial point?

Proposition
For hpxq “ x2{2 ` a, the set of initial points where the update
xt`1 “ xt ´

hpxtq
}∇hpxtq}2

2
∇hpxtq converges to the minimum has measure zero
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Failure in the Stochastic Case

Proposition
There exist f1 and f2 quadratic 1-d functions and a starting point x1 such
that SPS on F pxq “ 0.5pf1pxq ` f2pxqq satisfies

ErF pxtqs ´ min
x

F pxq ě 2{3, @t
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Summary and Takeaways

The Good: A Unifying Perspective
The Polyak stepsize is equivalent to GD on a surrogate
ϕpxq “ 1

2pf ´ f ‹q2

The adaptivity comes from the fact that ϕ is always locally “smooth”
with a known curvature constant }g}2

2

This framework simplifies and unifies the analysis of many Polyak-like
methods

The Bad: Fundamental Instability
When the surrogate’s minimum value is positive (e.g., f ‹

underestimated or no interpolation), the dynamics change drastically
The algorithm becomes unstable near the optimum, leading to cycles
and non-convergence
This neighborhood of convergence is not an analysis artifact but a
fundamental property of the method
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