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Leading question

Online Learning Offline Learning
Optimism principle dominates Pessimism principle dominates

How should we combine those two paradigms?



Multi-Armed Bandits: Setting

Arms: i€ [K], ri~ B(u), up*= max fij, Aj=p* — pj

Horizon: T, a: € [K], rt~ B(uq,)

> Regret: R(T) = Ztrzl(ﬂ* — Hay)

> Minimax: ©(v/KT), instance-dependent: © (ZI:A,>O IOAgI_T>




Algorithmic Families

e ¢-Greedy — fixed or decaying e
e Thompson Sampling — Bayesian posterior sampling (Agrawal & Goyal, 2012)

e Optimism in the Face of Uncertainty — exploration bonus (Auer et al., 2002; Auer &
Ortner, 2010)

Optimism Principle
Select it = arg max; [pi(t) + bonus;(t)]

E.g. bonus;(t) = %



Offline Learning

Key Challenge: Data coverage—does the dataset sufficiently cover optimal or
near-optimal policies?

> Expert Data: Generated by near-optimal policies; imitation learning achieves good
performances(Ross et al., 2011; Rajaraman et al., 2020, Rashidinejad et al., 2023).

> Uniform Data: Covers policies broadly but requires algorithms to adapt to limited
coverage (Chenget al., 2022; Yin et al., 2020).

Pessimism Principle
Avoid under-explored areas



In Multi-Armed Bandits Algorithm 1: Lower Confidence Bound (LCB)

fort =1do
> Offline sample size for armiis m; Compute lower bound for reward of each
in._ . [los(1/6).
> Total offline sample sizeism armi, fij m;

Choose arm with highest lower bound;
end

LCB ‘ UcCB

1
min,- mj

Minimax regret

Optimal (ignoring poly-log factors)




Regret wrt the logging policy

Define the reward of the logging policy:
— l . .
NO—-E;E:rmNr
1

Regret wrt the logging policy for trajectory (I(t))/_;: R(T) = ZtT:l o — Hi(t)-

LCB ucB
Regr'et agé\iflst Zivmi () 1 (LB)
logging policy " -




What about offline-to-online learning?



Literature review

» How does enriching online methods with offline data impact the regret?
> In MAB, a logarithmic amount of data is enough to get constant regret (Shivaswamy et
al., 2012)
> Results of a similar flavor in more general settings (Gur et al., 2020, Bu et al., 2021)
» How to reduce sample or computational complexity in Hybrid RL? (Song et al., 2022;
Xie et al., 2022b; Ball et al., 2023; Wagenmaker and Pacchiano, 2023; Li et al., 2023,
2024; Zhou et al., 2023)



Pessimism vs. Optimism in Offline-to-Online learning
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Evolution of the performance of the algorithms when the offline data is perfectly balanced
between the arms



Pessimism vs. Optimism in Offline-to-Online learning
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Evolution of the performance of the algorithms when the offline data is highly skewed
(only 2 arms sampled)
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Algoritm OTO



Algorithm Design

At each round, the algorithm computes an exploration budget.

> |f the exploration budget is high enough, play UCB.
> |f the exploration budget is not high enough, play safe option, i.e., LCB.

The algorithm design is inspired by conservative bandits (Wu et al.,2016).
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Exploration Budget Computation

A few definitions:

» The benchmark:
Y= :U’L(O ( ) - aﬁa

where § = Ziv™ \ﬁ 2log (X) and v is a tunable parameter.
> TY(t): Number oftlmes arm j was played by UCB.
» TL(t): Total number of times LCB has been played up to time t.

Exploration Budget:
K
Br(t) = S TU(t — 1)(pult) — ) + puge(t) — 7 + (Tt — 1) + T — t)as.
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Breakdown of the Exploration Budget

Exploration Budget:

K
Br(t) = Y0 T(¢ — 1)((t) — ) + g () =7+ (TH(E = 1) +T = s

» First term: lower bound on reward cumulated above benchmark by UCB steps.

> Second term: lower bound on reward above benchmark UCB could get at iteration ¢.

> Last term: when LCB is played, the reward exceeds the benchmark by at least a3.
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Breakdown of the Exploration Budget

Exploration Budget:
K

Br(t) = TV = 1)(w(t) = ) + g (6) =7+ (TH(E = 1) + T — s

> First term: lower bound on reward cumulated above benchmark by UCB steps.

> Second term: lower bound on reward above benchmark UCB could get at iteration t.

> Last term: when LCB is played, the reward exceeds the benchmark by at least a3.
> Last part of the last term: lower bound how much budget you would obtain by
playing it safe at every iteration.
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Regret Bounds

Theorem
On any instance, with § the parameter for the confidence intervals, with probability at least

1 — 276, OTO has:

RPYTY<T(1+a)B

Elements of proof:

> By design, the budget is positive at the end of the horizon,
> A positive budget implies that the total cumulated reward exceeds the benchmark,

» The benchmark is a discounted UB on the reward of the logging policy.
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Regret Bounds

Theorem

On any instance, with probability at least 1 — 2T§:

K

RTY <> A

i=1

We also have:

1

(

4log(K/9)

A2

I

2| 10g(K/5)

_mi) +
+

12K log(K/9)

+|J|+

12K log(K/4)

af

af

+ K.

+272%6.
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Elements of proof

Regret is splitin two parts:

Regret of steps where UCB is played: Regret of steps where LCB is played:
» The UB of suboptimal arms exceed UB  » The budget becomes negative only
of optimal arm for a limited number of when suboptimal arms have been
iteration, pulled by UCB,
> Gives first part of the regret, exactlythe > By proof on the left, we can bound the
same as the UB we have for the regret cost of those pulls,
of UCB. » Each play LCB augments budget by a3,

» This gives an upper bound on the total
number of plays of LCB.

16



Comparison with LCB and UCB
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Evolution of the performance of the algorithms when the offline data is perfectly balanced
between the arms
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Pessimism vs. Optimism in Offline-to-Online learning
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Evolution of the performance of the algorithms when the offline data is highly skewed
(only 2 arms sampled)
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Dealing with unknown horizon

» Usual tricks for confidence interval construction

» Use a doubling horizon for the last part of the last term

K

Z T7(t = 1)(pi(t) =) + py(8) =7 + (Tt = 1) + T — t)as
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Experiments



Optimal arm not sampled in the offline data
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Optimal arm sampled in the offline data
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Unknown horizon, Optimal arm not sampled in the offline
data

— oto 5001 — oOto
— ucs — ucs
707 LcB LcB
400
; /
7 + 300
- 4
I o
o404 o
< <
30 200 //
20
100
104
04 0
0 25 50 75 100 125 150 175 200 0 250 500 750 1000 1250 1500 1750 2000
iteration iteration
(a) T = 200 (b) T = 2000

22



Unknown horizon, Optimal arm sampled in the offline data
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Analysis of UCB and LCB in the
Intermediate Setting



Minimax Regret

T T=1 T=m r>m
Rucs(T) T m Z},-(mf VKT
1 1 1
RLCB(T) min,-m,- m min,-m,- T min,— mj

Table 1: Evolution of the pseudo regret of LCB and UCB as T grows (ignoring poly log terms, exact

expressions in the Lemmas)



Lower bound on the Minimax Regret of any algorithm

Theorem

Forany T > 1 and for any strategy m, we have:

1 U
RAA(T) > —T .
A2 g \/E?ér—1+z,@mj

The above bound may be hard to interpret. Notice it implies the two following looser
bounds forany T > 1 and any strategy m:

1 (K—1) 1 1
R(T)> =T and RA(T)> —Ty/————.
( )—31 \/T—1+m—max,~m,’ ( )—31 \/T—1+min,-m,~
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Regret of UCB

Theorem (UCB’s upper bound on the minimax regret)
Forany T > 1and any 6 € ©, with probability at leat 1 — 2T?6:
“ 2
R(T) < A <A_2 log(K/d) — m,> +) A
=il ! ar i=1

Also, we have the following instance-independent bound:

Rucs(T) < min | max 2T 2|J| log(K/d) + LT M 4272
JCIK] T+ ZjeJ mj min; m;
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Regret of LCB

Proposition
For T > 1, we have:

min (0.07T,0.15T

min; mj

) < Ries(T) < Ty M + 2T26.
min; mj
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Regret wrt the logging policy

T 1 T=m T>m
LB UuB LB UuB LB uB
RY%(T) s e emn| VAT o | vk
REm | vm | Zym NG S gm | T | i

Table 2: Evolution of the regrets against the logging policy as T grows (ignoring poly log terms),

assuming wlog m; > m, > ... > my, and with p; = { ﬁ - m11+% )
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Regret wrt the logging policy of LCB

Proposition
We have:

RE(T)<T szmﬁ 2|og<K

If m; = mand m; = Oforany/ > 1, we obtain:

REE(T)<T

If m; = ¢ foralli € [K], we get:
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Regret wrt the logging policy of UCB

Proposition

Forany T >0, L € N, we have

K
log 1 m 1 1
e (bm) [
uce = K m 2(m,~ + %) Z(mane[K] m;j =+ %)

Ifm; = mand m; = 0foranyi > 1, we obtain:

1
ROE(T) > E\/KT.

If m; = % foralli € [K], we get: l
O
Ryés(T) = 0.
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Thank you for listening !
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