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Leading question

Online Learning
Optimism principle dominates

Offline Learning
Pessimism principle dominates+

How should we combine those two paradigms?
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Multi-Armed Bandits: Setting

Arms: i ∈ [K], ri ∼ B(µi), µ∗ = max
i

µi, ∆i = µ∗ − µi

Horizon: T, at ∈ [K], rt ∼ B(µat)

▶ Regret: R(T) =
∑T

t=1(µ
∗ − µat)

▶ Minimax: Θ(
√

KT), instance-dependent: Θ
(∑

i:∆i>0
log T
∆i

)
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Algorithmic Families

• ϵ-Greedy — fixed or decaying ϵ

• Thompson Sampling — Bayesian posterior sampling (Agrawal & Goyal, 2012)

• Optimism in the Face of Uncertainty — exploration bonus (Auer et al., 2002; Auer &
Ortner, 2010)

Optimism Principle
Select it = argmaxi [µ̂i(t) + bonusi(t)]

E.g. bonusi(t) =
√

log(1/δ)
Ti(t)
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Offline Learning
Key Challenge: Data coverage—does the dataset sufficiently cover optimal or

near-optimal policies?

▶ Expert Data: Generated by near-optimal policies; imitation learning achieves good
performances(Ross et al., 2011; Rajaraman et al., 2020, Rashidinejad et al., 2023).

▶ Uniform Data: Covers policies broadly but requires algorithms to adapt to limited
coverage (Cheng et al., 2022; Yin et al., 2020).

Pessimism Principle
Avoid under-explored areas
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In Multi-Armed Bandits

▶ Offline sample size for arm i is mi

▶ Total offline sample size is m

Algorithm 1: Lower Confidence Bound (LCB)

for t = 1 do
Compute lower bound for reward of each

arm i, µ̂i −
√

log(1/δ)
mi

;

Choose arm with highest lower bound;
end

LCB UCB

Minimax regret
√

1
mini mi

Optimal (ignoring poly-log factors)
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Regret wrt the logging policy

Define the reward of the logging policy:

µ0 =
1
m

∑

i

miµi.

Regret wrt the logging policy for trajectory (I(t))T
t=1: R(T) =

∑T
t=1 µ0 − µI(t).

LCB UCB

Regret against
logging policy

∑
i
√

mi
m (UB)

√
1

mini mi
(LB)
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What about offline-to-online learning?
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Literature review

▶ How does enriching online methods with offline data impact the regret?
▶ In MAB, a logarithmic amount of data is enough to get constant regret (Shivaswamy et

al., 2012)
▶ Results of a similar flavor in more general settings (Gur et al., 2020, Bu et al., 2021)

▶ How to reduce sample or computational complexity in Hybrid RL? (Song et al., 2022;
Xie et al., 2022b; Ball et al., 2023; Wagenmaker and Pacchiano, 2023; Li et al., 2023,
2024; Zhou et al., 2023)
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Pessimism vs. Optimism in Offline-to-Online learning
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Pessimism vs. Optimism in Offline-to-Online learning
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Algoritm OTO



Algorithm Design

At each round, the algorithm computes an exploration budget.

▶ If the exploration budget is high enough, play UCB.
▶ If the exploration budget is not high enough, play safe option, i.e., LCB.

The algorithm design is inspired by conservative bandits (Wu et al.,2016).
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Exploration Budget Computation

A few definitions:

▶ The benchmark:
γ = µL(0)(0)− αβ,

where β =
∑

i
√

mi
m

√
2 log

(K
δ

)
and α is a tunable parameter.

▶ TU
i (t): Number of times arm i was played by UCB.

▶ TL(t): Total number of times LCB has been played up to time t.

Exploration Budget:

BT(t) =
K∑

i=1

TU
i (t − 1)(µi(t)− γ) + µU(t)(t)− γ + (TL(t − 1) + T − t)αβ.
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Breakdown of the Exploration Budget

Exploration Budget:

BT(t) =
K∑

i=1

TU
i (t − 1)(µi(t)− γ) + µU(t)(t)− γ + (TL(t − 1) + T − t)αβ

▶ First term: lower bound on reward cumulated above benchmark by UCB steps.
▶ Second term: lower bound on reward above benchmark UCB could get at iteration t.
▶ Last term: when LCB is played, the reward exceeds the benchmark by at least αβ.
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Breakdown of the Exploration Budget

Exploration Budget:

BT(t) =
K∑

i=1

TU
i (t − 1)(µi(t)− γ) + µU(t)(t)− γ + (TL(t − 1) + T − t)αβ

▶ First term: lower bound on reward cumulated above benchmark by UCB steps.
▶ Second term: lower bound on reward above benchmark UCB could get at iteration t.
▶ Last term: when LCB is played, the reward exceeds the benchmark by at least αβ.
▶ Last part of the last term: lower bound how much budget you would obtain by

playing it safe at every iteration.
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Regret Bounds
Theorem

On any instance, with δ the parameter for the confidence intervals, with probability at least
1 − 2Tδ, OTO has:

Rlog(T) ≤ T (1 + α)β

Elements of proof:

▶ By design, the budget is positive at the end of the horizon,
▶ A positive budget implies that the total cumulated reward exceeds the benchmark,
▶ The benchmark is a discounted UB on the reward of the logging policy.
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Regret Bounds

Theorem

On any instance, with probability at least 1 − 2Tδ:

R(T) ≤
K∑

i=1

∆i

(
4 log(K/δ)

∆2
i

− mi

)

+

+
12K log(K/δ)

αβ
+ K.

We also have:

R(T) ≤ max
J⊆[K]

2T

√
2|J| log(K/δ)
T +

∑
j∈J mj

+ |J|+ 12K log(K/δ)
αβ

+ 2T2δ.
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Elements of proof

Regret is split in two parts:

Regret of steps where UCB is played:
▶ The UB of suboptimal arms exceed UB

of optimal arm for a limited number of
iteration,

▶ Gives first part of the regret, exactly the
same as the UB we have for the regret
of UCB.

Regret of steps where LCB is played:
▶ The budget becomes negative only

when suboptimal arms have been
pulled by UCB,

▶ By proof on the left, we can bound the
cost of those pulls,

▶ Each play LCB augments budget by αβ,
▶ This gives an upper bound on the total

number of plays of LCB.
16



Comparison with LCB and UCB
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Pessimism vs. Optimism in Offline-to-Online learning
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Dealing with unknown horizon

▶ Usual tricks for confidence interval construction
▶ Use a doubling horizon for the last part of the last term

K∑

i=1

TU
i (t − 1)(µi(t)− γ) + µU(t)(t)− γ + (TL(t − 1) + T − t)αβ
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Experiments



Optimal arm not sampled in the offline data
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Optimal arm sampled in the offline data
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Unknown horizon, Optimal arm not sampled in the offline
data

0 25 50 75 100 125 150 175 200
iteration

0

10

20

30

40

50

60

70

80

Re
gr

et

OtO
UCB
LCB

(a) T = 200

0 250 500 750 1000 1250 1500 1750 2000
iteration

0

100

200

300

400

500

Re
gr

et

OtO
UCB
LCB

(b) T = 2000 22



Unknown horizon, Optimal arm sampled in the offline data
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Analysis of UCB and LCB in the
Intermediate Setting



Minimax Regret

T T = 1 T = m T ≫ m

RUCB(T)
√

1
mini mi

m
√

K∑
i mi

√
KT

RLCB(T)
√

1
mini mi

m
√

1
mini mi

T
√

1
mini mi

Table 1: Evolution of the pseudo regret of LCB and UCB as T grows (ignoring poly log terms, exact
expressions in the Lemmas)
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Lower bound on the Minimax Regret of any algorithm
Theorem

For any T ≥ 1 and for any strategy π, we have:

Rπ(T) ≥ 1
31

T

√
max
J⊆[K]

|J|
T − 1 +

∑
j∈J mj

.

The above bound may be hard to interpret. Notice it implies the two following looser
bounds for any T ≥ 1 and any strategy π:

Rπ(T) ≥ 1
31

T

√
(K − 1)

T − 1 + m −maxi mi
, and Rπ(T) ≥ 1

31
T
√

1
T − 1 +mini mi

.
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Regret of UCB

Theorem (UCB’s upper bound on the minimax regret)

For any T ≥ 1 and any θ ∈ Θ, with probability at leat 1 − 2T2δ:

R(T) ≤
K∑

i=1

∆i

(
2
∆2

i
log(K/δ)− mi

)

+

+
K∑

i=1

∆i.

Also, we have the following instance-independent bound:

RUCB(T) ≤ min


max

J⊆[K]
2T

√
2|J| log(K/δ)
T +

∑
j∈J mj

+ |J|; T

√
2 log(K/δ)
mini mi


+ 2T2δ.

26



Regret of LCB

Proposition
For T ≥ 1, we have:

min

(
0.07T, 0.15T

√
1

mini mi

)
≤ RLCB(T) ≤ T

√
2 log(K/δ)
mini mi

+ 2T2δ.
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Regret wrt the logging policy

T 1 T = m T ≫ m

LB UB LB UB LB UB

Rlog
UCB(T)

√
1

mini mi

∑K
i=1

(m
K − mi

)
ρi

√
KT 0

√
KT

Rlog
LCB(T)

√
m2

m

∑
i
√

mi
m

√
m2

∑m
i=1

√
mi T

√
m2

m T
∑

i
√

mi
m

Table 2: Evolution of the regrets against the logging policy as T grows (ignoring poly log terms),
assuming wlog m1 ≥ m2 ≥ . . . ≥ mK , and with ρi =

[√
1

mi+
m
K
−

√
1

m1+
m
K

]
.
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Regret wrt the logging policy of LCB
Proposition
We have:

Rlog
LCB(T) ≤ T

∑
i
√

mi∑
i mi

√
2 log

(
K
δ

)
+ 2T2δ.

If m1 = m and mi = 0 for any i > 1, we obtain:

Rlog
LCB(T) ≤ T

√
2 log

(K
δ

)

m
+ 2T2δ.

If mi =
m
K for all i ∈ [K], we get:

Rlog
LCB(T) ≤ T

√
2K log

(K
δ

)

m
+ 2T2δ.
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Regret wrt the logging policy of UCB
Proposition

For any T > 0, T
K ∈ N, we have

Rlog
UCB(T) ≥ T

K∑

i=1

(
1
K
− mi

m

)[√
1

2(mi +
T
K )

−
√

1
2(maxj∈[K] mj +

T
K )

]
.

If m1 = m and mi = 0 for any i > 1, we obtain:

Rlog
UCB(T) ≥ 1

10
√

KT.

If mi =
m
K for all i ∈ [K], we get:

Rlog
UCB(T) ≥ 0.
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Thank you for listening !
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