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ABSTRACT. In finite dimension, we consider convex lower semicontinuous func-
tions with nonempty compact domain and address the following questions. (i)
Is such a function necessarily bounded? (ii) If bounded on its domain, does
such a function necessarily attain a maximum on its domain? We answer both
questions in the negative by providing counterexamples that share a similar
construction.

1. INTRODUCTION

The extreme value theorem ensures that a continuous function admits both
a minimum and a maximum on a nonempty compact set, and is attributed to
Bolzano—see e.g. [Rud76, Theorem 4.16] for a textbook reference. This can be
adapted to lower semicontinuous functions: they necessarily admit a minimum on
a nonempty compact set—see e.g. [Bou07, §6, Théoréme 3|. In this note, we focus
on convex lower semicontinuous functions on nonempty compact domains.

Definition 1. Let n > 1 and f : R™ — R U {+oc0}. The domain of f is the set of
points where the function has finite values:

dom f = {z € R", f(z) < +o0}.
f is lower semicontinuous if for all a € R, the set {x € R", f(z) < a} is closed.

One characterization of lower semicontinuity is the following: when x converges
to a point zg, the value f(x) cannot jump up at the limit:

liminf f(z) > f(xo).

Besides, one intuitive consequence of convexity seems to be the following: the
function cannot jump down when converging to the boundary of the domain from
the inside. Combining the two leads one to believe that the function is necessarily
continuous on its domain. If the domain is compact, this would in turn guarantee
that a maximum is attained. However, the functions constructed below show that
this intuition is wrong: it is possible for the function to jump down when reaching
the boundary of the domain from the inside, while preserving convexity.

We consider the following questions regarding convex lower semicontinuous func-
tions with nonempty compact domains. Is such a function necessarily bounded on
its domain? And in the bounded case, does such a function necessarily admit a
maximum on its domain? We construct counterexamples for both questions.

Note that these questions become trivial if either convexity or lower semicontinu-
ity is relaxed. Indeed, dropping lower semicontinuity, a function with value 0 in the
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interior of a Euclidean ball and arbitrary finite values on the boundary is convex,
and therefore can either be unbounded or bounded with no maximum attained on
its domain. If we instead drop convexity, functions f,g : R — RU {400} defined as

0 ifx=0, 0 ifx=0,
flx)=4¢2 ifo<z<1, gz)=<1—-z if0<az<l,
400 otherwise, 400 otherwise,

are lower semicontinuous, have domain [0, 1], f is not bounded on its domain, and
g is bounded on its domain but does not attain a maximum on it.

A somewhat related result is the Gale-Klee-Rockafellar theorem [GKR68], which
ensures that a bounded convex function on the relative interior of a convex polytope
can be extended in a unique way to a continuous convex function on the whole
polytope, ensuring the existence of a maximum.

2. COUNTEREXAMPLES

Let f:R? = R U {+oc} be defined by

22 4 2
ifz>0
f(xa y) = x
+00 otherwise.

In particular, f is nonnegative.

.

e

FI1GURE 1. Level lines of f.

Lemma 2. f is convex.

Proof. f is twice differentiable on R% x R and its Hessian writes, for z > 0 and

yER,

2y /2% —2y/x?

V2 f(x,y) =
—2y/x?  2/x

The first coefficient and the determinant are nonnegative, which is enough to deduce
that this 2 x 2 symmetric matrix is positive semi-definite. This is true for all
(x,y) € R% x R. fis thus convex on R} x R which is its domain. O



ON THE SUPREMUM OF CONVEX LOWER SEMICONTINUOUS FUNCTIONS ON COMPACT DOMAINS3

Let g : R? = RU {400} be defined as
0 if (z,y) = (0,0
g(x,y) = { (.v) =(0,0)

f(z,y) otherwise.

g only differs from f at (0,0) where g(0,0) = 0, whereas f(0,0) = 4+oco. In partic-
ular, g is also nonnegative.

Lemma 3. g is conver and lower semicontinuous.

Proof. Let z,2/ € R? and A € (0,1). We aim at proving the following convexity
inequality:

gz + (1= X)) < Ag(z) + (1= Ng(=).
Denote z = (z,y) and 2’ = (2/,y).

If either z < 0 or ' < 0, the right-hand side is infinite, and the inequality is
true. If z > 0 and x’ > 0, then the inequality is true because g and f coincide on
(IR’_';_)2 x R. We now assume = 0 and 2’ > 0. If y # 0, g(2) = g(x,y) = +o0, the
right-hand side is infinite, and the inequality is true.

If y = 0, then z = (0,0) and let ¢ > 0. Because 2’ € (R%)? x R, we can use the
already established cases to write

9Ae) + (1= 0)2) < Agles') + (1 - Ng(+)
L@ )

CU/

+ (1= MN)g(z).
As e — 07, A(ez’) + (1 — \)z’ belongs to (R%)? x R and converges to (1 — \)z’ €
(R%)? x R. Therefore, the above left-hand side converges to g((1 — X)z") because g

coincide on (R%)? x R with f, which is continuous on (R%)? x R. To the limit, the
inequality becomes

g((1=A)2") < (1= N)g(2").
Using the fact that z = (0,0) and g(z) = 0 by definition, the above indeed rewrites
as

g(Az + (1= N)2") < Ag(z) + (1 = Ng(2).
The case x > 0 and 2’ = 0 is similar. Therefore, we have established the convexity
inequality in all cases.
We now turn to lower semicontinuity. Let a € R. If o < 0,
{(z,9) €R?, g(a,y) < a} = 2,

which is closed. If > 0,
<

{(z,y) €R?, g(z,y) < a} ={(0,00}U{(z,y) €R?, f(z,y) <a}

={
= {(0,0)}U {(J},y) ERi xR, 21—:(/2 <a}

(07

= {(0,0)} U {(x,y) € R} xR, (f”_ 5)2 Ty s Oj}

2 o2
= R2 ( — g) 2 < =

where we recognize the equation of a closed Euclidean ball. The set is thus closed,
and g is lower semicontinous. [
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For 0 < a < 1, let C, C R? be defined as

5—1
Ca:{(xvy>e 07% x R, Ogyg(x_xQ_‘%ﬁ)a}'
Yy
Y
Ci/3
Ci/2
X X
VE—1 V-1
2 2

FIGURE 2. Cy/p and Cy/3.

Lemma 4. For all0 < a <1, C, is nonempty, convexr and compact.

Proof. Let us first prove that ¢ :  — (z — 22 — 23)? is concave on (0, ‘/5_1). It

2
will then be concave on closed interval [0, ‘/52_1] by continuity. Let us also consider

P(z) = o — 2% — 23. Functions ¢ and v are positive and twice differentiable on

(0, \/52_1), and for z € (0, \/52_1),

' (x) = -2 — 62 < 0.
Then, simple computation yields that for = € (0, @),

¢"(z) _ ¥"(2) V' (x)
() () ()

The above first term is negative because 1" is negative and 1) is positive. The second

+a(a—1)

term is nonpositive because 0 < a < 1. Therefore ¢ is negative on (0, ¥3=1) and

2
1 is thus concave on [0, ‘/52_1].

C. is nonempty as it contains (0,0). It is obviously bounded. It can be written
as the intersection of closed half-spaces with the hypograph of concave continuous
function ¢ on interval [0, \/52’1], which is therefore closed and convex. C is therefore

closed and convex. Hence the result. O

For 0 <a < 1,let hy : R2 = RU {+00} be defined as

halo, 1) = {g(x,m if (2,9) € C

400 otherwise.

Lemma 5. For 0 < a <1, hy is convex, lower semicontinuous and dom h, = C,.
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Proof. h, can be written as the sum of two convex lower semicontinuous functions:
g and I¢, the convex indicator of closed convex set C,. It is therefore convex
and lower semicontinuous. We easily check that C, C dom g and we deduce that
dom h, = C,. [l

Theorem 6. hy /3 is a convex, lower semicontinuous function with nonempty com-
pact domain and which is not bounded from above on its domain.

Proof. For k > 2 integer, let

1
z, = — and yk:(xk—x%—xi)

k
so that (zx,yx) belongs to Cy/3. Then, as k — +o0,

1o (11 1y
B \k k2 R s

1/3
)

hyys(x, yr) = 1
k
Hence, h; /3 is not bounded from above on its domain. O

Theorem 7. hy /3 is a convex lower semicontinuous function with nonempty com-
pact domain, which is bounded on its domain, and which does not admit a mazimum
on its domain.

Proof. Let us prove that hy/5(Cy/2) = [0, 1), this will imply that h; 5 is bounded
on its domain but does not admit a maximum on it.
Let (x,y) € C1/2. If 2 = 0, necessarily y = 0 by definiton of C; /, and

h1/2(0,0> = 0 S [O, 1)

If0<az< Y31

2, .2 2 _ .2 _ .3
h1/2($ay):x —;—y <x T xx a =1-22€][0,1).
This proves hy/5(C1/2) C [0,1).

Conversely, let t € [0,1). If t = 0, consider (z,y) = (0,0) € C which gives
h12(0,0) = 0.

Ift> \/52_1, let z =+/1—t. Then, 0 <z < @ and let y = Vo — 22 — 22 which
ensures that (z,y) € C;/, and

hl/Q(xa y) =
In the case 0 < t < @, let =t and y = 0, which implies that (z,y) € C;/, and

hl/?(‘r7y) =z =t
This proves hy/5(Ci/2) D [0,1). |

We see in these two examples h;/3 and hy/p that when following the upper
boundary of the domain towards (0,0), the value of the function increases but
jumps down to 0 when reaching point (0,0). When considering function g, which
is convex and lower semicontinuous, following the same paths corresponds to the
interior of the domain, and the value of g also jumps down to 0 when reaching the
point (0, 0).
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