CHAPITRE II k PLUS PROCHES VOISINS

Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

*5

Nous présentons dans ce chapitre l'algorithme des k plus proches voisins qui se décline aussi bien en classification qu'en régression. Dans le cas de la classification, on peut le présenter informellement de la façon suivante. Soit $n \ge 1$ un entier et $S_{\text{train}} = (x_i, y_i)_{i \in [n]}$ un échantillon d'apprentissage 1. k est un paramètre à choisir au préalable. Pour k = 1, le prédicteur correspondant prédit, pour toute entrée $x \in \mathcal{X}$, la sortie $y_{i(x)}$ où $i(x) \in [n]$ est un indice tel que $x_{i(x)}$ est l'entrée la plus proche de x parmi tous les x_i ($i \in [n]$). Lorsque $k \ge 2$, la généralisation est naturelle : le prédicteur donne la classe majoritaire 2 parmi les k plus proches voisins de x.

En pratique, l'algorithme est efficace en faible dimension (la dimension étant le nombre de variables explicatives) et pour de petits échantillions d'apprentissage. À l'inverse, l'algorithme requiert un long temps de calcul lorsque l'échantillon d'apprentissage est grand, et est peu performant en grande dimension.

I. CADRE

On se donne les éléments suivants.

- 1. On rappelle que [n] est une notation compacte qui désigne l'ensemble $\{1, 2, ..., n\}$.
- 2. c'est-à-dire la valeur qui revient le plus souvent parmi les y_i concernés

- Un ensemble d'entrées \mathscr{X} muni d'une fonction distance $\rho: \mathscr{X} \times \mathscr{X} \to \mathbb{R}_+$. Par exemple, lorsque $\mathscr{X} = \mathbb{R}^d$, on peut considérer la distance euclidienne : $\rho(x,x') = \|x-x'\|_2 = \sqrt{\sum_{j=1}^d (x_j'-x_j)^2}$.
- Un ensemble de sorties $\mathcal Y$ fini ou égal à $\mathbb R$. Par exemple, $\mathcal Y=\{0,1\}$ (cas fini).
- Soit $n\geqslant 1$ et $S_{\text{train}}=(x_i,y_i)_{i\in[n]}\in\mathcal{S}(\mathcal{X},\mathcal{Y})$ un échantillon d'apprentissage.

2. STATISTIQUES DE RANG

On introduit ci-dessous les statistiques de rang, qui vont permettre de définir formellement et de façon unique les k plus proches voisins d'un point $x \in \mathcal{X}$.

Soit $x \in \mathcal{X}$. La première statistique de rang est définie par :

$$r_1(x) = \min \mathop{\rm Arg\,min}_{i \in [n]} \rho(x, x_i).$$

Autrement dit, parmi les indices $i \in [n]$ qui minimisent la distance $\rho(x, x_i)$, $r_1(x)$ est défini comme étant le plus petit (indice). On pose ensuite $I_1(x) = [n] \setminus \{r_1(x)\}$. Puis par récurrence pour $2 \le k \le n$, on définit la k-ème statistique de rang par :

$$r_k(x) = \min \mathop{\rm Arg\,min}_{i \in \mathcal{I}_{k-1}(x)} \rho(x, x_i),$$

et on pose $I_k(x) = I_{k-1}(x) \setminus \{r_k(x)\}.$

REMARQUE. — Le fait de prendre le minimum de chaque ensemble de minimiseur est une convention arbitraire qui permet de départager les cas où il existe plusieurs minimiseurs.

REMARQUE. — La première statistique de rang $r_1(x)$ est bien définie car n n'étant pas nul, [n] est non vide, donc les valeurs $\rho(x,x_i)$ pour $i\in[n]$ sont en nombre fini et non nul. Il existe donc bien au moins un minimum, et donc l'Argmin est non vide. De même, $r_k(x)$ est bien défini pour tout $2\leqslant k\leqslant n$ car on voit facilement par récurrence que $I_{k-1}(x)$ est de cardinal n-k+1>0, et l'Argmin correspondant est non vide.

EXEMPLE. — On considère $\mathcal{X} = \mathbb{R}$ et pour $x, x' \in \mathbb{R}$, $\rho(x, x') = |x' - x|$. On se donne des entrées $x_1 = 0$, $x_2 = 3$, $x_3 = 2$, ainsi que x = 1, qu'on peut représenter comme suit.

On détermine alors les trois statistiques de rang.

$$\begin{split} r_1(x) &= \min \overbrace{ \underset{i \in [3]}{\text{Arg}\min \rho(x, x_i)}}^{\{1,3\}} = 1 \qquad \qquad I_1(x) = [3] \setminus \{1\} = \{2,3\} \\ r_2(x) &= \min \overbrace{ \underset{i \in I_1(x)}{\text{Arg}\min \rho(x, x_i)}}^{\{3\}} = 3 \qquad \qquad I_2(x) = I_1(x) \setminus \{3\} = \{2\} \\ r_3(x) &= \min \overbrace{ \underset{i \in I_2(x)}{\text{Arg}\min \rho(x, x_i)}}^{\{2\}} = 2 \end{split}$$

3. DÉCOUPAGE DE L'ESPACE D'ENTRÉES

Pour $1 \leqslant k \leqslant n$, on note $\mathcal{P}_k([n])$ l'ensemble des sous-ensembles de [n] à k éléments. Pour $J \in \mathcal{P}_k([n])$, on définit :

$$\mathbf{A}_{\mathbf{J}}^{(k)} = \left\{ x \in \mathcal{X} \mid \left\{ r_1(x), \ldots, r_k(x) \right\} = \mathbf{J} \right\}.$$

Autrement dit, $A_j^{(k)}$ est l'ensemble des $x \in \mathcal{Z}$ pour lesquels les k premières statistiques de rang correspondent aux éléments de J.

Exemple. — En reprenant l'exemple précédent, on a pour k = 1:

$$A_{\{1\}}^{(l)}=\left]-\infty$$
 , $l]$, $\quad A_{\{2\}}^{(l)}=\left[5/2\text{,}+\infty\right[\text{ , }\quad A_{\{3\}}^{(l)}=\left]l\text{,}5/2\right[\text{ , }$

et pour k = 2:

$$A_{\{1,2\}}^{(2)}=\varnothing,\quad A_{\{1,3\}}^{(2)}=\left]-\infty,3/2\right],\quad A_{\{2,3\}}^{(2)}=\left]3/2,+\infty\right[.$$

PROPOSITION. — *Pour tout* $1 \le k \le n$:

$$\mathscr{X} = \bigsqcup_{\mathbf{J} \in \mathscr{P}_k([\mathbf{n}])} \mathbf{A}_{\mathbf{J}}^{(k)}$$
 ,

où ⊔ désigne l'union disjointe.

Autrement dit, pour k donné, les ensembles $A_J^{(k)}$ pour J parcourant $\mathcal{P}_k([n])$ forment une partition J de \mathcal{X} . La démonstration de la proposition est laissée en exercice.

Pour $x \in \mathcal{X}$, on note $J^{(k)}(x)$ l'unique élément de $\mathcal{P}_k([n])$ tel que $x \in A^{(k)}_{J^{(k)}(x)}$. Autrement dit, $J^{(k)}(x)$ est l'ensemble des indices des k plus proches voisins de x (selon les statistiques de rang).

4. LE PRÉDICTEUR DES k PLUS PROCHES VOISINS (ALIAS kNN)

En *régression* (c'est-à-dire lorsque $\mathcal{Y} = \mathbb{R}$), le régresseur des k plus proches voisins est défini par :

$$\forall x \in \mathcal{X}, \quad \hat{f}^{(k)}(x) = \frac{1}{k} \sum_{i \in \mathbb{J}^{(k)}(x)} y_i.$$

Autrement dit, $\hat{f}^{(k)}$ prédit pour l'entrée x la moyenne des sorties des k plus proches voisins de x.

En classification (c'est-à-dire lorsque \mathcal{Y} est fini), on suppose, quitte à renommer les étiquettes, que $\mathcal{Y} = [N]$ où N est le cardinal de \mathcal{Y} . Le classifieur des k plus proches voisins est défini par :

$$\forall x \in \mathcal{X}, \quad \hat{f}^{(k)}(x) = \min \mathop{\mathrm{Arg\,max}}_{m \in [\mathbb{N}]} \mathop{\mathrm{Card}} \left\{ i \in \mathcal{J}^{(k)}(x) \, \big| \, y_i = m \right\}.$$

Autrement dit, $\hat{f}^{(k)}(x)$ est le plus petit $m \in [N]$ parmi ceux qui sont majoritaires parmi les k plus proches voisins de x.

REMARQUE. — Le choix du plus petit indice m parmi ceux qui sont majoritaires parmi les valeurs de y_i concernés est une convention arbitraire qui permet de départager les cas où plusieurs valeurs sont majoritaires à égalité.

^{3.} avec un abus de langage car certains des ensembles $A_J^{(k)}$ peuvent être vides tandis qu'une partition à proprement parler ne contient pas d'ensemble vide.