import numpy as np
import pandas as pd
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y)
from sklearn.linear_model import LinearRegression
linreg = LinearRegression().fit(X_train,y_train)
m=len(X)
print('Erreur de test: ',(1/m)*np.sum((y_test-linreg.predict(X_test))**2))
Erreur de test: 5.652671166106032
print('Score R²: ',linreg.score(X_test,y_test))
Score R²: 0.6832195864696119
from sklearn.linear_model import LassoCV
lasso = LassoCV(alphas=np.logspace(-10,10,40),cv=5)
lasso.fit(X_train,y_train)
print('Paramètre alpha sélectionné:',lasso.alpha_)
print('R² Score: ',lasso.score(X_test,y_test))
Paramètre alpha sélectionné: 0.00151177507061566 R² Score: 0.6827297829114514
from sklearn.linear_model import RidgeCV
ridge = RidgeCV(cv=5,alphas=np.logspace(-10,10,40))
ridge.fit(X_train,y_train)
print('Paramètre alpha sélectionné:',ridge.alpha_)
print('Score R²: ',ridge.score(X_test,y_test))
Paramètre alpha sélectionné: 0.17012542798525856 Score R²: 0.6806291614609656
from sklearn.kernel_ridge import KernelRidge
kr = KernelRidge(kernel='rbf',alpha=.001,gamma=.001)
kr.fit(X_train,y_train)
print('Score R²: ',kr.score(X_test,y_test))
Score R²: 0.39692745632127113
from sklearn.model_selection import GridSearchCV
kr = GridSearchCV(KernelRidge(kernel='rbf'), cv=5,
param_grid={"alpha": np.logspace(-15,-10,10)
,"gamma": np.logspace(-11,-7,10)},verbose=3)
kr.fit(X_train,y_train)
Fitting 5 folds for each of 100 candidates, totalling 500 fits [CV] alpha=1e-15, gamma=1e-11 ........................................ [CV] ............ alpha=1e-15, gamma=1e-11, score=0.723, total= 0.0s [CV] alpha=1e-15, gamma=1e-11 ........................................ [CV] ............ alpha=1e-15, gamma=1e-11, score=0.636, total= 0.0s [CV] alpha=1e-15, gamma=1e-11 ........................................ [CV] ............ alpha=1e-15, gamma=1e-11, score=0.821, total= 0.0s [CV] alpha=1e-15, gamma=1e-11 ........................................ [CV] ............ alpha=1e-15, gamma=1e-11, score=0.749, total= 0.0s [CV] alpha=1e-15, gamma=1e-11 ........................................ [CV] ............ alpha=1e-15, gamma=1e-11, score=0.696, total= 0.0s [CV] alpha=1e-15, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-15, gamma=2.7825594022071258e-11, score=0.364, total= 0.0s [CV] alpha=1e-15, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-15, gamma=2.7825594022071258e-11, score=0.601, total= 0.0s [CV] alpha=1e-15, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-15, gamma=2.7825594022071258e-11, score=0.839, total= 0.0s [CV] alpha=1e-15, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-15, gamma=2.7825594022071258e-11, score=0.715, total= 0.0s [CV] alpha=1e-15, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-15, gamma=2.7825594022071258e-11, score=-1.900, total= 0.0s [CV] alpha=1e-15, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-15, gamma=7.742636826811278e-11, score=-0.205, total= 0.0s [CV] alpha=1e-15, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-15, gamma=7.742636826811278e-11, score=0.488, total= 0.0s [CV] alpha=1e-15, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-15, gamma=7.742636826811278e-11, score=0.333, total= 0.0s [CV] alpha=1e-15, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-15, gamma=7.742636826811278e-11, score=-0.813, total= 0.0s [CV] alpha=1e-15, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-15, gamma=7.742636826811278e-11, score=-0.333, total= 0.0s [CV] alpha=1e-15, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-15, gamma=2.1544346900318867e-10, score=0.685, total= 0.0s [CV] alpha=1e-15, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-15, gamma=2.1544346900318867e-10, score=0.735, total= 0.0s [CV] alpha=1e-15, gamma=2.1544346900318867e-10 .......................
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " [Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " [Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using "
[CV] alpha=1e-15, gamma=2.1544346900318867e-10, score=0.851, total= 0.0s [CV] alpha=1e-15, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-15, gamma=2.1544346900318867e-10, score=0.816, total= 0.0s [CV] alpha=1e-15, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-15, gamma=2.1544346900318867e-10, score=0.684, total= 0.0s [CV] alpha=1e-15, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-15, gamma=5.994842503189421e-10, score=0.658, total= 0.0s [CV] alpha=1e-15, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-15, gamma=5.994842503189421e-10, score=0.133, total= 0.0s [CV] alpha=1e-15, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-15, gamma=5.994842503189421e-10, score=0.108, total= 0.0s [CV] alpha=1e-15, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-15, gamma=5.994842503189421e-10, score=0.254, total= 0.0s [CV] alpha=1e-15, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-15, gamma=5.994842503189421e-10, score=-0.882, total= 0.0s [CV] alpha=1e-15, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-15, gamma=1.6681005372000556e-09, score=0.753, total= 0.0s [CV] alpha=1e-15, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-15, gamma=1.6681005372000556e-09, score=0.311, total= 0.0s [CV] alpha=1e-15, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-15, gamma=1.6681005372000556e-09, score=0.502, total= 0.0s [CV] alpha=1e-15, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-15, gamma=1.6681005372000556e-09, score=0.615, total= 0.0s [CV] alpha=1e-15, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-15, gamma=1.6681005372000556e-09, score=-1.692, total= 0.0s [CV] alpha=1e-15, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-15, gamma=4.641588833612773e-09, score=0.823, total= 0.0s [CV] alpha=1e-15, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-15, gamma=4.641588833612773e-09, score=0.706, total= 0.0s [CV] alpha=1e-15, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-15, gamma=4.641588833612773e-09, score=0.787, total= 0.0s [CV] alpha=1e-15, gamma=4.641588833612773e-09 ........................
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using "
[CV] alpha=1e-15, gamma=4.641588833612773e-09, score=0.489, total= 0.0s [CV] alpha=1e-15, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-15, gamma=4.641588833612773e-09, score=-0.061, total= 0.0s [CV] alpha=1e-15, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-15, gamma=1.2915496650148827e-08, score=0.385, total= 0.0s [CV] alpha=1e-15, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-15, gamma=1.2915496650148827e-08, score=0.650, total= 0.0s [CV] alpha=1e-15, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-15, gamma=1.2915496650148827e-08, score=0.199, total= 0.0s [CV] alpha=1e-15, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-15, gamma=1.2915496650148827e-08, score=0.682, total= 0.0s [CV] alpha=1e-15, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-15, gamma=1.2915496650148827e-08, score=0.722, total= 0.0s [CV] alpha=1e-15, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-15, gamma=3.593813663804626e-08, score=-0.602, total= 0.0s [CV] alpha=1e-15, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-15, gamma=3.593813663804626e-08, score=0.308, total= 0.0s [CV] alpha=1e-15, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-15, gamma=3.593813663804626e-08, score=0.686, total= 0.0s [CV] alpha=1e-15, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-15, gamma=3.593813663804626e-08, score=0.591, total= 0.0s [CV] alpha=1e-15, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-15, gamma=3.593813663804626e-08, score=-0.864, total= 0.0s [CV] alpha=1e-15, gamma=1e-07 ........................................ [CV] ........... alpha=1e-15, gamma=1e-07, score=-5.556, total= 0.0s [CV] alpha=1e-15, gamma=1e-07 ........................................
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using "
[CV] ............ alpha=1e-15, gamma=1e-07, score=0.216, total= 0.0s [CV] alpha=1e-15, gamma=1e-07 ........................................ [CV] ........... alpha=1e-15, gamma=1e-07, score=-6.500, total= 0.0s [CV] alpha=1e-15, gamma=1e-07 ........................................ [CV] ............ alpha=1e-15, gamma=1e-07, score=0.655, total= 0.0s [CV] alpha=1e-15, gamma=1e-07 ........................................ [CV] .......... alpha=1e-15, gamma=1e-07, score=-17.875, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-11 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-11, score=0.723, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-11 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-11, score=0.636, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-11 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-11, score=0.822, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-11 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-11, score=0.758, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-11 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-11, score=-0.638, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11 ....... [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11, score=0.291, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11 ....... [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11, score=0.573, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11 ....... [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11, score=0.732, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11 ....... [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11, score=0.768, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11 .......
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using "
[CV] alpha=3.593813663804626e-15, gamma=2.7825594022071258e-11, score=0.168, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11 ........ [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11, score=0.631, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11 ........ [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11, score=0.501, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11 ........ [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11, score=0.106, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11 ........ [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11, score=0.691, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11 ........ [CV] alpha=3.593813663804626e-15, gamma=7.742636826811278e-11, score=-1.039, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10 ....... [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10, score=-1.739, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10 ....... [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10, score=0.590, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10 ....... [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10, score=0.855, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10 ....... [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10, score=0.753, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10 ....... [CV] alpha=3.593813663804626e-15, gamma=2.1544346900318867e-10, score=0.675, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10 ........ [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10, score=0.577, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10 ........ [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10, score=0.301, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10 ........ [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10, score=-0.705, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10 ........ [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10, score=-0.632, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10 ........
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using "
[CV] alpha=3.593813663804626e-15, gamma=5.994842503189421e-10, score=0.056, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09 ....... [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09, score=0.436, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09 ....... [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09, score=0.141, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09 ....... [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09, score=-0.000, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09 ....... [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09, score=0.546, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09 ....... [CV] alpha=3.593813663804626e-15, gamma=1.6681005372000556e-09, score=-2.191, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09 ........ [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09, score=0.736, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09 ........ [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09, score=0.686, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09 ........ [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09, score=0.803, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09 ........ [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09, score=0.462, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09 ........ [CV] alpha=3.593813663804626e-15, gamma=4.641588833612773e-09, score=-0.296, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08 ....... [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08, score=0.480, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08 ....... [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08, score=0.600, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08 ....... [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08, score=-0.318, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08 ....... [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08, score=0.684, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08 ....... [CV] alpha=3.593813663804626e-15, gamma=1.2915496650148827e-08, score=-1.968, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08 ........ [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08, score=0.181, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08 ........
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using "
[CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08, score=0.501, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08 ........ [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08, score=0.678, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08 ........ [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08, score=0.576, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08 ........ [CV] alpha=3.593813663804626e-15, gamma=3.593813663804626e-08, score=-0.230, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-07 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-07, score=-6.739, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-07 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-07, score=0.117, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-07 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-07, score=-6.914, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-07 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-07, score=0.617, total= 0.0s [CV] alpha=3.593813663804626e-15, gamma=1e-07 ........................ [CV] alpha=3.593813663804626e-15, gamma=1e-07, score=-14.315, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-11 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-11, score=0.762, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-11 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-11, score=0.594, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-11 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-11, score=0.696, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-11 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-11, score=0.646, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-11 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-11, score=0.560, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11, score=0.749, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11, score=0.691, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11, score=0.786, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11, score=0.749, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.7825594022071258e-11, score=0.655, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11, score=0.775, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11, score=0.723, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11 .......
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:190: UserWarning: Singular matrix in solving dual problem. Using least-squares solution instead. warnings.warn("Singular matrix in solving dual problem. Using " /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.70333e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.77116e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.24603e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.02784e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.92857e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.41298e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.73727e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=9.36235e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.26361e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.20735e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.87782e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.05181e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.95124e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.53305e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.21787e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.72792e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.09256e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.94514e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.54125e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.07961e-18): result may not be accurate. overwrite_a=False)
[CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11, score=0.815, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11, score=0.558, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=1.2915496650148826e-14, gamma=7.742636826811278e-11, score=0.314, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10, score=0.730, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10, score=0.807, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10, score=0.625, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10, score=-0.103, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.2915496650148826e-14, gamma=2.1544346900318867e-10, score=0.640, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10, score=0.749, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10, score=0.771, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10, score=0.756, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10, score=0.776, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=1.2915496650148826e-14, gamma=5.994842503189421e-10, score=0.607, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09, score=0.705, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09, score=0.763, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09, score=0.699, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09, score=0.723, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.6681005372000556e-09, score=0.723, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09, score=0.821, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09, score=0.655, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09, score=0.753, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09, score=0.677, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=1.2915496650148826e-14, gamma=4.641588833612773e-09, score=-0.294, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08, score=-0.089, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08, score=0.582, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08, score=0.770, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08, score=0.575, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.2915496650148826e-14, gamma=1.2915496650148827e-08, score=0.842, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08, score=-1.924, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08, score=0.466, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08, score=0.632, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08, score=0.726, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=1.2915496650148826e-14, gamma=3.593813663804626e-08, score=-0.434, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-07 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-07, score=-34.863, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-07 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-07, score=0.457, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-07 .......................
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.29451e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.2912e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.91389e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.96998e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.85037e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.88882e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.29174e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.42708e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.03288e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.33408e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.94249e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.19332e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.81554e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.8248e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.20958e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.8376e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.66308e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.30609e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.20912e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.39855e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.49754e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=8.35279e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.07195e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.83477e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.57025e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=9.37441e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=1.35283e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=9.71566e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=9.63615e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=8.81134e-18): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.15489e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.23549e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.54374e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.18742e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.91228e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.02218e-17): result may not be accurate. overwrite_a=False)
[CV] alpha=1.2915496650148826e-14, gamma=1e-07, score=0.514, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-07 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-07, score=0.333, total= 0.0s [CV] alpha=1.2915496650148826e-14, gamma=1e-07 ....................... [CV] alpha=1.2915496650148826e-14, gamma=1e-07, score=-49.188, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-11 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-11, score=0.728, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-11 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-11, score=0.644, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-11 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-11, score=0.822, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-11 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-11, score=0.782, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-11 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-11, score=0.689, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11, score=0.756, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11, score=0.653, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11, score=0.843, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11, score=0.800, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.7825594022071258e-11, score=0.714, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11, score=0.820, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11, score=0.710, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11, score=0.886, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11, score=0.832, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11 ....... [CV] alpha=4.6415888336127726e-14, gamma=7.742636826811278e-11, score=0.776, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10, score=0.793, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10, score=0.774, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10, score=0.877, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10, score=0.867, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10 ...... [CV] alpha=4.6415888336127726e-14, gamma=2.1544346900318867e-10, score=0.843, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10, score=0.804, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10, score=0.792, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10, score=0.856, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10, score=0.874, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10 ....... [CV] alpha=4.6415888336127726e-14, gamma=5.994842503189421e-10, score=0.848, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09, score=0.804, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09, score=0.780, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09, score=0.818, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09, score=0.868, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.6681005372000556e-09, score=0.866, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09, score=0.835, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09, score=0.735, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09, score=0.802, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09 ....... [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09, score=0.811, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09 .......
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.11712e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.31178e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.27015e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.23466e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.11772e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.30933e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.2971e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.70771e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.21083e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.48554e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.19193e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.30546e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.21253e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.26632e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.61231e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.13955e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.34726e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.25014e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.04851e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.50877e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=2.72709e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.84171e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.06148e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.34831e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.20764e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.41699e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.44361e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.35426e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.7787e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.39565e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.55471e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=2.84137e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.10738e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.64987e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.13065e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.18051e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.26616e-17): result may not be accurate. overwrite_a=False)
[CV] alpha=4.6415888336127726e-14, gamma=4.641588833612773e-09, score=0.769, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08, score=0.680, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08, score=0.655, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08, score=0.807, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08, score=0.754, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08 ...... [CV] alpha=4.6415888336127726e-14, gamma=1.2915496650148827e-08, score=0.845, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08, score=-0.331, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08, score=0.509, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08, score=0.724, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08, score=0.716, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08 ....... [CV] alpha=4.6415888336127726e-14, gamma=3.593813663804626e-08, score=0.374, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-07 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-07, score=-18.061, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-07 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-07, score=0.455, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-07 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-07, score=0.616, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-07 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-07, score=0.538, total= 0.0s [CV] alpha=4.6415888336127726e-14, gamma=1e-07 ....................... [CV] alpha=4.6415888336127726e-14, gamma=1e-07, score=-14.727, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-11 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-11, score=0.733, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-11 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-11, score=0.637, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-11 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-11, score=0.828, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-11 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-11, score=0.767, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-11 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-11, score=0.702, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11, score=0.741, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11, score=0.643, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11, score=0.832, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11, score=0.776, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.7825594022071258e-11, score=0.702, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11 ....... [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11, score=0.782, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11 ....... [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11, score=0.672, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11 ....... [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11, score=0.864, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11 ....... [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11, score=0.809, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11 ....... [CV] alpha=1.6681005372000557e-13, gamma=7.742636826811278e-11, score=0.741, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10, score=0.818, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10, score=0.740, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10, score=0.890, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10, score=0.856, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10 ...... [CV] alpha=1.6681005372000557e-13, gamma=2.1544346900318867e-10, score=0.818, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10 .......
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.25173e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=2.87272e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.94411e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=4.40742e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.8585e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=2.97907e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=3.93445e-17): result may not be accurate. overwrite_a=False)
[CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10, score=0.803, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10 ....... [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10, score=0.786, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10 ....... [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10, score=0.871, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10 ....... [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10, score=0.872, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10 ....... [CV] alpha=1.6681005372000557e-13, gamma=5.994842503189421e-10, score=0.852, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09, score=0.808, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09, score=0.792, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09, score=0.838, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09, score=0.875, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.6681005372000556e-09, score=0.872, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09 ....... [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09, score=0.838, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09 ....... [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09, score=0.767, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09 ....... [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09, score=0.814, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09 ....... [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09, score=0.854, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09 ....... [CV] alpha=1.6681005372000557e-13, gamma=4.641588833612773e-09, score=0.796, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08, score=0.781, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08, score=0.707, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08, score=0.806, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08, score=0.784, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08 ...... [CV] alpha=1.6681005372000557e-13, gamma=1.2915496650148827e-08, score=0.763, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08 ....... [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08, score=0.171, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08 ....... [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08, score=0.602, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08 ....... [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08, score=0.785, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08 ....... [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08, score=0.724, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08 ....... [CV] alpha=1.6681005372000557e-13, gamma=3.593813663804626e-08, score=0.820, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-07 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-07, score=-6.538, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-07 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-07, score=0.458, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-07 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-07, score=0.636, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-07 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-07, score=0.688, total= 0.0s [CV] alpha=1.6681005372000557e-13, gamma=1e-07 ....................... [CV] alpha=1.6681005372000557e-13, gamma=1e-07, score=-3.049, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-11 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-11, score=0.731, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-11 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-11, score=0.637, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-11 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-11, score=0.823, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-11 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-11, score=0.766, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-11 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-11, score=0.699, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11 ....... [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11, score=0.734, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11 ....... [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11, score=0.639, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11 .......
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=9.59559e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=1.10671e-16): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=1.00482e-16): result may not be accurate. overwrite_a=False)
[CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11, score=0.826, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11 ....... [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11, score=0.768, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11 ....... [CV] alpha=5.994842503189421e-13, gamma=2.7825594022071258e-11, score=0.701, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11 ........ [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11, score=0.749, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11 ........ [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11, score=0.650, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11 ........ [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11, score=0.844, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11 ........ [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11, score=0.785, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11 ........ [CV] alpha=5.994842503189421e-13, gamma=7.742636826811278e-11, score=0.713, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10 ....... [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10, score=0.807, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10 ....... [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10, score=0.698, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10 ....... [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10, score=0.880, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10 ....... [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10, score=0.829, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10 ....... [CV] alpha=5.994842503189421e-13, gamma=2.1544346900318867e-10, score=0.774, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10 ........ [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10, score=0.814, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10 ........ [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10, score=0.762, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10 ........ [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10, score=0.886, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10 ........ [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10, score=0.866, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10 ........ [CV] alpha=5.994842503189421e-13, gamma=5.994842503189421e-10, score=0.833, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09 ....... [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09, score=0.806, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09 ....... [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09, score=0.790, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09 ....... [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09, score=0.858, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09 ....... [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09, score=0.877, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09 ....... [CV] alpha=5.994842503189421e-13, gamma=1.6681005372000556e-09, score=0.864, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09 ........ [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09, score=0.813, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09 ........ [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09, score=0.788, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09 ........ [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09, score=0.826, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09 ........ [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09, score=0.872, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09 ........ [CV] alpha=5.994842503189421e-13, gamma=4.641588833612773e-09, score=0.859, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08 ....... [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08, score=0.837, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08 ....... [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08, score=0.745, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08 ....... [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08, score=0.811, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08 ....... [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08, score=0.826, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08 ....... [CV] alpha=5.994842503189421e-13, gamma=1.2915496650148827e-08, score=0.746, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08 ........ [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08, score=0.574, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08 ........ [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08, score=0.674, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08 ........ [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08, score=0.805, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08 ........ [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08, score=0.746, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08 ........ [CV] alpha=5.994842503189421e-13, gamma=3.593813663804626e-08, score=0.861, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-07 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-07, score=-2.167, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-07 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-07, score=0.513, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-07 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-07, score=0.706, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-07 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-07, score=0.714, total= 0.0s [CV] alpha=5.994842503189421e-13, gamma=1e-07 ........................ [CV] alpha=5.994842503189421e-13, gamma=1e-07, score=0.116, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-11 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-11, score=0.727, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-11 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-11, score=0.634, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-11 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-11, score=0.823, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-11 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-11, score=0.767, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-11 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-11, score=0.702, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11, score=0.733, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11, score=0.637, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11, score=0.824, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11, score=0.765, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.7825594022071258e-11, score=0.701, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11 ....... [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11, score=0.736, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11 ....... [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11, score=0.642, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11 ....... [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11, score=0.831, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11 ....... [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11, score=0.772, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11 ....... [CV] alpha=2.1544346900318868e-12, gamma=7.742636826811278e-11, score=0.702, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10, score=0.768, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10, score=0.662, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10, score=0.856, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10, score=0.799, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.1544346900318868e-12, gamma=2.1544346900318867e-10, score=0.728, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10 ....... [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10, score=0.822, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10 ....... [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10, score=0.724, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10 ....... [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10, score=0.889, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10 ....... [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10, score=0.847, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10 ....... [CV] alpha=2.1544346900318868e-12, gamma=5.994842503189421e-10, score=0.801, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09, score=0.810, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09, score=0.777, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09, score=0.877, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09, score=0.874, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.6681005372000556e-09, score=0.850, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09 ....... [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09, score=0.810, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09 ....... [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09, score=0.792, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09 ....... [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09, score=0.844, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09 ....... [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09, score=0.877, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09 ....... [CV] alpha=2.1544346900318868e-12, gamma=4.641588833612773e-09, score=0.871, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08, score=0.839, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08, score=0.777, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08, score=0.820, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08, score=0.860, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.1544346900318868e-12, gamma=1.2915496650148827e-08, score=0.807, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08 ....... [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08, score=0.770, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08 ....... [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08, score=0.719, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08 ....... [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08, score=0.811, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08 ....... [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08, score=0.784, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08 ....... [CV] alpha=2.1544346900318868e-12, gamma=3.593813663804626e-08, score=0.796, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-07 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-07, score=-0.506, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-07 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-07, score=0.607, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-07 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-07, score=0.778, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-07 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-07, score=0.720, total= 0.0s [CV] alpha=2.1544346900318868e-12, gamma=1e-07 ....................... [CV] alpha=2.1544346900318868e-12, gamma=1e-07, score=0.760, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-11 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-11, score=0.724, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-11 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-11, score=0.630, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-11 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-11, score=0.822, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-11 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-11, score=0.768, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-11 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-11, score=0.700, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11 ....... [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11, score=0.731, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11 ....... [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11, score=0.635, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11 ....... [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11, score=0.824, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11 ....... [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11, score=0.766, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11 ....... [CV] alpha=7.742636826811278e-12, gamma=2.7825594022071258e-11, score=0.701, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11 ........ [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11, score=0.734, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11 ........ [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11, score=0.638, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11 ........ [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11, score=0.826, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11 ........ [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11, score=0.766, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11 ........ [CV] alpha=7.742636826811278e-12, gamma=7.742636826811278e-11, score=0.701, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10 ....... [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10, score=0.742, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10 ....... [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10, score=0.646, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10 ....... [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10, score=0.837, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10 ....... [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10, score=0.778, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10 ....... [CV] alpha=7.742636826811278e-12, gamma=2.1544346900318867e-10, score=0.706, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10 ........ [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10, score=0.792, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10 ........ [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10, score=0.682, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10 ........ [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10, score=0.871, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10 ........ [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10, score=0.817, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10 ........ [CV] alpha=7.742636826811278e-12, gamma=5.994842503189421e-10, score=0.754, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09 ....... [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09, score=0.822, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09 ....... [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09, score=0.748, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09 ....... [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09, score=0.890, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09 ....... [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09, score=0.861, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09 ....... [CV] alpha=7.742636826811278e-12, gamma=1.6681005372000556e-09, score=0.825, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09 ........ [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09, score=0.807, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09 ........ [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09, score=0.785, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09 ........ [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09, score=0.863, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09 ........ [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09, score=0.877, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09 ........ [CV] alpha=7.742636826811278e-12, gamma=4.641588833612773e-09, score=0.862, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08 ....... [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08, score=0.813, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08 ....... [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08, score=0.791, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08 ....... [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08, score=0.833, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08 ....... [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08, score=0.875, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08 ....... [CV] alpha=7.742636826811278e-12, gamma=1.2915496650148827e-08, score=0.859, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08 ........ [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08, score=0.827, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08 ........ [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08, score=0.755, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08 ........ [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08, score=0.820, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08 ........ [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08, score=0.831, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08 ........ [CV] alpha=7.742636826811278e-12, gamma=3.593813663804626e-08, score=0.772, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-07 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-07, score=0.279, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-07 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-07, score=0.683, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-07 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-07, score=0.801, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-07 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-07, score=0.741, total= 0.0s [CV] alpha=7.742636826811278e-12, gamma=1e-07 ........................ [CV] alpha=7.742636826811278e-12, gamma=1e-07, score=0.875, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-11 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-11, score=0.722, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-11 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-11, score=0.624, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-11 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-11, score=0.821, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-11 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-11, score=0.765, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-11 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-11, score=0.696, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11, score=0.728, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11, score=0.631, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11, score=0.824, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11, score=0.766, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.7825594022071258e-11, score=0.701, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11 ....... [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11, score=0.734, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11 ....... [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11, score=0.635, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11 ....... [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11, score=0.825, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11 ....... [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11, score=0.765, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11 ....... [CV] alpha=2.7825594022071258e-11, gamma=7.742636826811278e-11, score=0.701, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10, score=0.735, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10, score=0.640, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10, score=0.829, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10, score=0.769, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10 ...... [CV] alpha=2.7825594022071258e-11, gamma=2.1544346900318867e-10, score=0.701, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10 ....... [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10, score=0.755, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10 ....... [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10, score=0.654, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10 ....... [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10, score=0.847, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10 ....... [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10, score=0.789, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10 ....... [CV] alpha=2.7825594022071258e-11, gamma=5.994842503189421e-10, score=0.717, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09, score=0.815, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09, score=0.707, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09, score=0.885, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09, score=0.836, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.6681005372000556e-09, score=0.784, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09 ....... [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09, score=0.815, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09 ....... [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09, score=0.766, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09 ....... [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09, score=0.882, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09 ....... [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09, score=0.872, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09 ....... [CV] alpha=2.7825594022071258e-11, gamma=4.641588833612773e-09, score=0.844, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08, score=0.808, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08, score=0.790, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08, score=0.849, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08, score=0.879, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08 ...... [CV] alpha=2.7825594022071258e-11, gamma=1.2915496650148827e-08, score=0.869, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08 ....... [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08, score=0.840, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08 ....... [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08, score=0.783, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08 ....... [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08, score=0.830, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08 ....... [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08, score=0.862, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08 ....... [CV] alpha=2.7825594022071258e-11, gamma=3.593813663804626e-08, score=0.823, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-07 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-07, score=0.673, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-07 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-07, score=0.729, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-07 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-07, score=0.809, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-07 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-07, score=0.784, total= 0.0s [CV] alpha=2.7825594022071258e-11, gamma=1e-07 ....................... [CV] alpha=2.7825594022071258e-11, gamma=1e-07, score=0.833, total= 0.0s [CV] alpha=1e-10, gamma=1e-11 ........................................ [CV] ............ alpha=1e-10, gamma=1e-11, score=0.722, total= 0.0s [CV] alpha=1e-10, gamma=1e-11 ........................................ [CV] ............ alpha=1e-10, gamma=1e-11, score=0.620, total= 0.0s [CV] alpha=1e-10, gamma=1e-11 ........................................ [CV] ............ alpha=1e-10, gamma=1e-11, score=0.815, total= 0.0s [CV] alpha=1e-10, gamma=1e-11 ........................................ [CV] ............ alpha=1e-10, gamma=1e-11, score=0.758, total= 0.0s [CV] alpha=1e-10, gamma=1e-11 ........................................ [CV] ............ alpha=1e-10, gamma=1e-11, score=0.698, total= 0.0s [CV] alpha=1e-10, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-10, gamma=2.7825594022071258e-11, score=0.725, total= 0.0s [CV] alpha=1e-10, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-10, gamma=2.7825594022071258e-11, score=0.624, total= 0.0s [CV] alpha=1e-10, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-10, gamma=2.7825594022071258e-11, score=0.822, total= 0.0s [CV] alpha=1e-10, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-10, gamma=2.7825594022071258e-11, score=0.764, total= 0.0s [CV] alpha=1e-10, gamma=2.7825594022071258e-11 ....................... [CV] alpha=1e-10, gamma=2.7825594022071258e-11, score=0.699, total= 0.0s [CV] alpha=1e-10, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-10, gamma=7.742636826811278e-11, score=0.732, total= 0.0s [CV] alpha=1e-10, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-10, gamma=7.742636826811278e-11, score=0.631, total= 0.0s [CV] alpha=1e-10, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-10, gamma=7.742636826811278e-11, score=0.826, total= 0.0s [CV] alpha=1e-10, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-10, gamma=7.742636826811278e-11, score=0.764, total= 0.0s [CV] alpha=1e-10, gamma=7.742636826811278e-11 ........................ [CV] alpha=1e-10, gamma=7.742636826811278e-11, score=0.701, total= 0.0s [CV] alpha=1e-10, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-10, gamma=2.1544346900318867e-10, score=0.735, total= 0.0s [CV] alpha=1e-10, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-10, gamma=2.1544346900318867e-10, score=0.636, total= 0.0s [CV] alpha=1e-10, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-10, gamma=2.1544346900318867e-10, score=0.827, total= 0.0s [CV] alpha=1e-10, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-10, gamma=2.1544346900318867e-10, score=0.764, total= 0.0s [CV] alpha=1e-10, gamma=2.1544346900318867e-10 ....................... [CV] alpha=1e-10, gamma=2.1544346900318867e-10, score=0.700, total= 0.0s [CV] alpha=1e-10, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-10, gamma=5.994842503189421e-10, score=0.738, total= 0.0s [CV] alpha=1e-10, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-10, gamma=5.994842503189421e-10, score=0.642, total= 0.0s [CV] alpha=1e-10, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-10, gamma=5.994842503189421e-10, score=0.834, total= 0.0s [CV] alpha=1e-10, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-10, gamma=5.994842503189421e-10, score=0.773, total= 0.0s [CV] alpha=1e-10, gamma=5.994842503189421e-10 ........................ [CV] alpha=1e-10, gamma=5.994842503189421e-10, score=0.703, total= 0.0s [CV] alpha=1e-10, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-10, gamma=1.6681005372000556e-09, score=0.776, total= 0.0s [CV] alpha=1e-10, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-10, gamma=1.6681005372000556e-09, score=0.668, total= 0.0s [CV] alpha=1e-10, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-10, gamma=1.6681005372000556e-09, score=0.861, total= 0.0s [CV] alpha=1e-10, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-10, gamma=1.6681005372000556e-09, score=0.805, total= 0.0s [CV] alpha=1e-10, gamma=1.6681005372000556e-09 ....................... [CV] alpha=1e-10, gamma=1.6681005372000556e-09, score=0.736, total= 0.0s [CV] alpha=1e-10, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-10, gamma=4.641588833612773e-09, score=0.824, total= 0.0s [CV] alpha=1e-10, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-10, gamma=4.641588833612773e-09, score=0.732, total= 0.0s [CV] alpha=1e-10, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-10, gamma=4.641588833612773e-09, score=0.891, total= 0.0s [CV] alpha=1e-10, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-10, gamma=4.641588833612773e-09, score=0.855, total= 0.0s [CV] alpha=1e-10, gamma=4.641588833612773e-09 ........................ [CV] alpha=1e-10, gamma=4.641588833612773e-09, score=0.812, total= 0.0s [CV] alpha=1e-10, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-10, gamma=1.2915496650148827e-08, score=0.806, total= 0.0s [CV] alpha=1e-10, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-10, gamma=1.2915496650148827e-08, score=0.778, total= 0.0s [CV] alpha=1e-10, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-10, gamma=1.2915496650148827e-08, score=0.868, total= 0.0s [CV] alpha=1e-10, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-10, gamma=1.2915496650148827e-08, score=0.878, total= 0.0s [CV] alpha=1e-10, gamma=1.2915496650148827e-08 ....................... [CV] alpha=1e-10, gamma=1.2915496650148827e-08, score=0.859, total= 0.0s [CV] alpha=1e-10, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-10, gamma=3.593813663804626e-08, score=0.820, total= 0.0s [CV] alpha=1e-10, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-10, gamma=3.593813663804626e-08, score=0.792, total= 0.0s [CV] alpha=1e-10, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-10, gamma=3.593813663804626e-08, score=0.841, total= 0.0s [CV] alpha=1e-10, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-10, gamma=3.593813663804626e-08, score=0.875, total= 0.0s [CV] alpha=1e-10, gamma=3.593813663804626e-08 ........................ [CV] alpha=1e-10, gamma=3.593813663804626e-08, score=0.864, total= 0.0s [CV] alpha=1e-10, gamma=1e-07 ........................................ [CV] ............ alpha=1e-10, gamma=1e-07, score=0.810, total= 0.0s [CV] alpha=1e-10, gamma=1e-07 ........................................ [CV] ............ alpha=1e-10, gamma=1e-07, score=0.763, total= 0.0s [CV] alpha=1e-10, gamma=1e-07 ........................................ [CV] ............ alpha=1e-10, gamma=1e-07, score=0.826, total= 0.0s [CV] alpha=1e-10, gamma=1e-07 ........................................ [CV] ............ alpha=1e-10, gamma=1e-07, score=0.831, total= 0.0s [CV] alpha=1e-10, gamma=1e-07 ........................................ [CV] ............ alpha=1e-10, gamma=1e-07, score=0.800, total= 0.0s
[Parallel(n_jobs=1)]: Done 500 out of 500 | elapsed: 3.5s finished
GridSearchCV(cv=5, error_score=nan, estimator=KernelRidge(alpha=1, coef0=1, degree=3, gamma=None, kernel='rbf', kernel_params=None), iid='deprecated', n_jobs=None, param_grid={'alpha': array([1.00000000e-15, 3.59381366e-15, 1.29154967e-14, 4.64158883e-14, 1.66810054e-13, 5.99484250e-13, 2.15443469e-12, 7.74263683e-12, 2.78255940e-11, 1.00000000e-10]), 'gamma': array([1.00000000e-11, 2.78255940e-11, 7.74263683e-11, 2.15443469e-10, 5.99484250e-10, 1.66810054e-09, 4.64158883e-09, 1.29154967e-08, 3.59381366e-08, 1.00000000e-07])}, pre_dispatch='2*n_jobs', refit=True, return_train_score=False, scoring=None, verbose=3)
print('Paramètres sélectionnés:',kr.best_params_)
print('Score:',kr.score(X_test,y_test))
Paramètres sélectionnés: {'alpha': 2.7825594022071258e-11, 'gamma': 1.2915496650148827e-08} Score: 0.8427016651966951
krpoly = GridSearchCV(KernelRidge(kernel='poly',coef0=1), cv=5,
param_grid={'degree': [10,11,12]
,"alpha": np.logspace(-13,-11,5)
,"gamma": np.logspace(-11,-9,5)},verbose=3)
krpoly.fit(X_train,y_train)
Fitting 5 folds for each of 75 candidates, totalling 375 fits [CV] alpha=1e-13, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-11, score=0.768, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-11, score=0.665, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-11, score=0.860, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-11, score=0.806, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-11, score=0.711, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11, score=0.822, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11, score=0.729, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11, score=0.881, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11, score=0.853, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683794e-11, score=0.807, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-10, score=0.785, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-10, score=0.783, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-10, score=0.865, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-10, score=0.874, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-10, score=0.855, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10, score=0.822, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10, score=0.796, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10, score=0.827, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10, score=0.872, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=10, gamma=3.1622776601683795e-10, score=0.871, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-09, score=0.829, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-09, score=0.749, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-09, score=0.812, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-09, score=0.846, total= 0.0s [CV] alpha=1e-13, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=10, gamma=1e-09, score=0.744, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-11, score=0.774, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-11, score=0.675, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-11, score=0.858, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-11 .............................
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.48987e-17): result may not be accurate. overwrite_a=False) [Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.13783e-17): result may not be accurate. overwrite_a=False) [Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=8.60536e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.90685e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=8.37301e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.21976e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.47005e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.00959e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.81067e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.02862e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.00157e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.39872e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.70716e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.45341e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.54706e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.57561e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=8.26328e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.82676e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.73979e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.83002e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.33031e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.11606e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.45115e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.24005e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.04559e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=8.31883e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.98039e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=8.1768e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.38004e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.95234e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.18771e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.33424e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.85069e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=8.49667e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.85036e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.55811e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.34134e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.59598e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.65806e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.02781e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.14266e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.30413e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.45558e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.56172e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.5371e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.23597e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.38228e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.34931e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.99656e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.27744e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.22725e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.60968e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.77222e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.36523e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.46974e-17): result may not be accurate. overwrite_a=False)
[CV] . alpha=1e-13, degree=11, gamma=1e-11, score=0.812, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-11, score=0.725, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11, score=0.818, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11, score=0.735, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11, score=0.881, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11, score=0.853, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683794e-11, score=0.817, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-10, score=0.794, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-10, score=0.781, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-10, score=0.863, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-10, score=0.872, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-10, score=0.855, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10, score=0.809, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10, score=0.797, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10, score=0.832, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10, score=0.871, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=11, gamma=3.1622776601683795e-10, score=0.866, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-09, score=0.844, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-09, score=0.745, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-09, score=0.810, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-09, score=0.837, total= 0.0s [CV] alpha=1e-13, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=11, gamma=1e-09, score=0.740, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-11, score=0.782, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-11, score=0.674, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-11, score=0.862, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-11, score=0.807, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-11, score=0.733, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11 ............
/home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.69934e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.64371e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.96325e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.0426e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.83503e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.65131e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.25107e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.50285e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.53637e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.13527e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.18751e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.31009e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.51599e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.91917e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.05017e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=5.36027e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.41257e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=6.68761e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.00811e-17): result may not be accurate. overwrite_a=False) /home/joon/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_ridge.py:188: LinAlgWarning: Ill-conditioned matrix (rcond=7.41866e-17): result may not be accurate. overwrite_a=False)
[CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11, score=0.818, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11, score=0.738, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11, score=0.878, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11, score=0.852, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683794e-11, score=0.819, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-10, score=0.800, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-10, score=0.788, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-10, score=0.867, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-10, score=0.870, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-10, score=0.857, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10, score=0.797, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10, score=0.794, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10, score=0.823, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10, score=0.867, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-13, degree=12, gamma=3.1622776601683795e-10, score=0.871, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-09, score=0.843, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-09, score=0.741, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-09, score=0.806, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-09, score=0.826, total= 0.0s [CV] alpha=1e-13, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-13, degree=12, gamma=1e-09, score=0.699, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11, score=0.746, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11, score=0.649, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11, score=0.841, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11, score=0.779, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-11, score=0.706, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11, score=0.804, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11, score=0.695, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11, score=0.879, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11, score=0.826, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683794e-11, score=0.770, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10, score=0.809, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10, score=0.765, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10, score=0.883, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10, score=0.869, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-10, score=0.836, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10, score=0.807, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10, score=0.794, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10, score=0.853, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10, score=0.875, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=10, gamma=3.1622776601683795e-10, score=0.867, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09, score=0.820, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09, score=0.778, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09, score=0.822, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09, score=0.866, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=10, gamma=1e-09, score=0.833, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11, score=0.749, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11, score=0.653, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11, score=0.843, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11, score=0.783, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-11, score=0.704, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11, score=0.810, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11, score=0.699, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11, score=0.880, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11, score=0.830, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683794e-11, score=0.776, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10, score=0.808, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10, score=0.771, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10, score=0.881, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10, score=0.869, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-10, score=0.842, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10, score=0.807, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10, score=0.795, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10, score=0.848, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10, score=0.877, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=11, gamma=3.1622776601683795e-10, score=0.870, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09, score=0.820, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09, score=0.775, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09, score=0.817, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09, score=0.862, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=11, gamma=1e-09, score=0.820, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11, score=0.751, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11, score=0.653, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11, score=0.847, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11, score=0.787, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-11, score=0.709, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11, score=0.815, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11, score=0.705, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11, score=0.883, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11, score=0.836, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683794e-11, score=0.783, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10, score=0.804, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10, score=0.774, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10, score=0.880, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10, score=0.869, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-10, score=0.844, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10, score=0.811, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10, score=0.794, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10, score=0.845, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10, score=0.876, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.162277660168379e-13, degree=12, gamma=3.1622776601683795e-10, score=0.872, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09, score=0.829, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09, score=0.771, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09, score=0.819, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09, score=0.859, total= 0.0s [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09 ............. [CV] alpha=3.162277660168379e-13, degree=12, gamma=1e-09, score=0.803, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-11, score=0.736, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-11, score=0.641, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-11, score=0.830, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-11, score=0.771, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-11, score=0.701, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11, score=0.768, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11, score=0.662, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11, score=0.856, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11, score=0.799, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683794e-11, score=0.729, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-10, score=0.822, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-10, score=0.734, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-10, score=0.889, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-10, score=0.852, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-10, score=0.811, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10, score=0.807, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10, score=0.785, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10, score=0.870, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10, score=0.875, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=10, gamma=3.1622776601683795e-10, score=0.857, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-09, score=0.810, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-09, score=0.790, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-09, score=0.833, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-09, score=0.875, total= 0.0s [CV] alpha=1e-12, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=10, gamma=1e-09, score=0.868, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-11, score=0.737, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-11, score=0.642, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-11, score=0.831, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-11, score=0.772, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-11, score=0.702, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11, score=0.774, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11, score=0.667, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11, score=0.860, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11, score=0.804, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683794e-11, score=0.735, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-10, score=0.822, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-10, score=0.740, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-10, score=0.890, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-10, score=0.856, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-10, score=0.816, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10, score=0.807, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10, score=0.787, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10, score=0.867, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10, score=0.876, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=11, gamma=3.1622776601683795e-10, score=0.859, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-09, score=0.811, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-09, score=0.789, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-09, score=0.830, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-09, score=0.874, total= 0.0s [CV] alpha=1e-12, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=11, gamma=1e-09, score=0.866, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-11, score=0.738, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-11, score=0.643, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-11, score=0.832, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-11, score=0.773, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-11, score=0.701, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11, score=0.780, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11, score=0.672, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11, score=0.864, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11, score=0.808, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683794e-11, score=0.742, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-10, score=0.820, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-10, score=0.746, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-10, score=0.889, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-10, score=0.858, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-10, score=0.821, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10, score=0.808, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10, score=0.789, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10, score=0.863, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10, score=0.876, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-12, degree=12, gamma=3.1622776601683795e-10, score=0.861, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-09, score=0.813, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-09, score=0.788, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-09, score=0.828, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-09, score=0.873, total= 0.0s [CV] alpha=1e-12, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-12, degree=12, gamma=1e-09, score=0.860, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11, score=0.734, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11, score=0.638, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11, score=0.825, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11, score=0.766, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-11, score=0.700, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11, score=0.744, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11, score=0.647, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11, score=0.839, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11, score=0.780, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683794e-11, score=0.708, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10, score=0.806, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10, score=0.695, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10, score=0.879, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10, score=0.828, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-10, score=0.771, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10, score=0.815, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10, score=0.766, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10, score=0.884, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10, score=0.869, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=10, gamma=3.1622776601683795e-10, score=0.839, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09, score=0.809, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09, score=0.791, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09, score=0.849, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09, score=0.877, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=10, gamma=1e-09, score=0.869, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11, score=0.734, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11, score=0.639, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11, score=0.826, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11, score=0.767, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-11, score=0.700, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11, score=0.747, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11, score=0.649, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11, score=0.841, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11, score=0.783, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683794e-11, score=0.710, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10, score=0.811, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10, score=0.702, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10, score=0.882, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10, score=0.833, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-10, score=0.779, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10, score=0.813, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10, score=0.770, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10, score=0.882, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10, score=0.870, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=11, gamma=3.1622776601683795e-10, score=0.843, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09, score=0.809, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09, score=0.791, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09, score=0.846, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09, score=0.877, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=11, gamma=1e-09, score=0.870, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11, score=0.734, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11, score=0.639, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11, score=0.827, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11, score=0.767, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-11, score=0.700, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11, score=0.750, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11, score=0.651, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11, score=0.843, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11, score=0.785, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683794e-11, score=0.713, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10, score=0.815, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10, score=0.708, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10, score=0.884, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10, score=0.837, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-10, score=0.786, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10, score=0.812, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10, score=0.774, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10, score=0.880, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10, score=0.872, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10 [CV] alpha=3.1622776601683794e-12, degree=12, gamma=3.1622776601683795e-10, score=0.847, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09, score=0.809, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09, score=0.792, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09, score=0.843, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09, score=0.877, total= 0.0s [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09 ............ [CV] alpha=3.1622776601683794e-12, degree=12, gamma=1e-09, score=0.871, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-11, score=0.733, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-11, score=0.636, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-11, score=0.825, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-11, score=0.765, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-11, score=0.701, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11, score=0.736, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11, score=0.641, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11, score=0.830, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11, score=0.770, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683794e-11, score=0.702, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-10, score=0.769, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-10, score=0.663, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-10, score=0.856, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-10, score=0.800, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-10, score=0.730, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10, score=0.823, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10, score=0.734, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10, score=0.890, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10, score=0.853, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=10, gamma=3.1622776601683795e-10, score=0.812, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-09, score=0.808, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-09, score=0.783, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-09, score=0.867, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-09, score=0.877, total= 0.0s [CV] alpha=1e-11, degree=10, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=10, gamma=1e-09, score=0.860, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-11, score=0.733, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-11, score=0.637, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-11, score=0.825, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-11, score=0.765, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-11, score=0.701, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11, score=0.736, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11, score=0.642, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11, score=0.831, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11, score=0.772, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683794e-11, score=0.702, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-10, score=0.775, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-10, score=0.668, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-10, score=0.860, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-10, score=0.804, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-10, score=0.736, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10, score=0.823, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10, score=0.740, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10, score=0.890, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10, score=0.857, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=11, gamma=3.1622776601683795e-10, score=0.817, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-09, score=0.807, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-09, score=0.785, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-09, score=0.863, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-09, score=0.877, total= 0.0s [CV] alpha=1e-11, degree=11, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=11, gamma=1e-09, score=0.862, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-11, score=0.733, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-11, score=0.637, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-11, score=0.825, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-11, score=0.765, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-11 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-11, score=0.700, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11, score=0.737, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11, score=0.642, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11, score=0.832, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11, score=0.773, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683794e-11, score=0.703, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-10, score=0.781, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-10, score=0.672, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-10, score=0.864, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-10, score=0.808, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-10 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-10, score=0.742, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10, score=0.822, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10, score=0.746, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10, score=0.890, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10, score=0.860, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10 ............ [CV] alpha=1e-11, degree=12, gamma=3.1622776601683795e-10, score=0.823, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-09, score=0.807, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-09, score=0.787, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-09, score=0.860, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-09, score=0.878, total= 0.0s [CV] alpha=1e-11, degree=12, gamma=1e-09 ............................. [CV] . alpha=1e-11, degree=12, gamma=1e-09, score=0.864, total= 0.0s
[Parallel(n_jobs=1)]: Done 375 out of 375 | elapsed: 2.8s finished
GridSearchCV(cv=5, error_score=nan, estimator=KernelRidge(alpha=1, coef0=1, degree=3, gamma=None, kernel='poly', kernel_params=None), iid='deprecated', n_jobs=None, param_grid={'alpha': array([1.00000000e-13, 3.16227766e-13, 1.00000000e-12, 3.16227766e-12, 1.00000000e-11]), 'degree': [10, 11, 12], 'gamma': array([1.00000000e-11, 3.16227766e-11, 1.00000000e-10, 3.16227766e-10, 1.00000000e-09])}, pre_dispatch='2*n_jobs', refit=True, return_train_score=False, scoring=None, verbose=3)
print('Paramètres sélectionnés:',krpoly.best_params_)
print('Score:',krpoly.score(X_test,y_test))
Paramètres sélectionnés: {'alpha': 3.162277660168379e-13, 'degree': 12, 'gamma': 3.1622776601683795e-10} Score: 0.8530460143899636