Exercices Convexity tools Université Paris–Saclay

жS

EXERCICE 1 (*Logistic loss*). — Prove that function $x \mapsto \log(1 + e^{-x})$ defined on \mathbb{R} is smooth.

EXERCICE 2 (*Characterization of Lipschitz continuity with subgradients*). — Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a proper convex function, $\|\cdot\|$ a norm on \mathbb{R}^d , and L > 0. Prove that f is L-Lipschitz on int dom f with respect to $\|\cdot\|$ if, and only if:

$$\forall x \in \operatorname{int} \operatorname{dom} f, \ \forall y \in \partial f(x), \quad \|y\|_* \leq L.$$

EXERCICE 3. — Let $\|\cdot\|$ be a norm in \mathbb{R}^d , B its closed unit ball, and $\|\cdot\|_*$ its dual norm. Prove that $I_B^* = \|\cdot\|_*$.

EXERCICE 4. — Let $y \in \mathbb{R}^d$, a > 0, $b \in \mathbb{R}$ and $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a proper, convex, lower semicontinuous function. Compute the Legendre–Fenchel transform of the following functions.

- a) $x \in \mathbb{R} \mapsto e^x$ c) $x \in \mathbb{R}^d \mapsto \max(1 \langle y, x \rangle, 0)$
- b) $x \in \mathbb{R}^d \mapsto \langle y, x \rangle$ d) $x \in \mathbb{R}^d \mapsto af(x) + b + \langle y, x \rangle$

EXERCICE 5. — Let $\|\cdot\|$ be a norm in \mathbb{R}^d , $\|\cdot\|_*$ its dual norm, $1 < p, q < +\infty$ such that 1/p + 1/q = 1 and $x, y \in \mathbb{R}^d$. Prove that

$$\langle x, y
angle \leqslant rac{1}{p} \left\| x
ight\|^p + rac{1}{q} \left\| y
ight\|^q_*.$$