Exercices UMD THEORY Université Paris–Saclay

жS

Let $d \ge 1$ and \mathscr{X} a nonempty closed convex set in \mathbb{R}^d .

EXERCICE 1. — Let $F : \mathbb{R}^d \to \mathbb{R}$ be a convex function. Prove that $F + I_{\mathscr{X}}$ is lower semicontinuous.

EXERCICE 2 (*Euclidean regularizer*). — Let h_2 be defined as

$$h_2(x) = rac{1}{2} \left\|x
ight\|_2^2 + \mathrm{I}_{\mathscr{X}}(x), \quad x \in \mathbb{R}^d.$$

1) Prove that h_2 is a regularizer, satisfies dom $h_2 = \mathscr{X}$ and that

$$abla b_2^*(y) = \operatorname*{arg\,min}_{x\in\mathscr{X}} \|y-x\|, \quad y\in\mathbb{R}^d.$$

- 2) Let $(u_t)_{t \ge 1}$ a sequence in \mathbb{R}^d and $x_1 \in \mathscr{X}$.
 - a) Define $x_{t+1} = \prod_{\mathscr{X}} (x_t + u_t)$ for all $t \ge 1$. Prove that $((x_t, x_t))_{t\ge 1}$ is a sequence of strict UMD iterates associated with b_2 and $(u_t)_{t\ge 1}$.
 - b) Define $y_1 = x_1$, $y_{t+1} = y_t + u_t$ and $x_{t+1} = \prod_{\mathscr{X}} (y_{t+1})$ for all $t \ge 1$. Prove that $((x_t, y_t))_{t\ge 1}$ is a sequence of strict UMD iterates associated with b_2 and $(u_t)_{t\ge 1}$.

EXERCICE 3 (*Entropic regularizer*). — Let $h_{ent} : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be defined as

$$b_{\text{ent}}(x) = \begin{cases} \sum_{i=1}^{d} x_i \log x_i & \text{if } x \in \Delta_d \\ +\infty & \text{otherwise,} \end{cases}$$

with convention $0 \log 0 = 0$.

- 1) Prove that h_{ent} is a regularizer and that dom $h_{ent} = \Delta_d$.
- 2) Compute $b_{ent} \min b_{ent}$.
- 3) Prove that

$$\nabla b^*_{\text{ent}}(y) = \left(\frac{\exp\left(y_i\right)}{\sum_{j=1}^d \exp\left(y_j\right)}\right)_{1 \leq i \leq d}, \quad y \in \mathbb{R}^d.$$

- 4) Express the Bregman divergence associated with h_{ent} .
- 5) Prove that h_{ent} is 1-strongly convex with respect to $\|\cdot\|_1$.

EXERCICE 4 (ℓ^p regularizer). — Let $p \in (1, 2)$ and $h_p : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be defined as

$$b_p(x) = \frac{1}{2} \left\| x \right\|_p^2 + \mathbf{I}_{\mathscr{X}}(x), \quad y \in \mathbb{R}^d.$$

- 1) Prove that h_p is a regularizer.
- 2) In the case $\mathscr{X} = \mathbb{R}^d$, prove that h_p is twice differentiable, compute its gradient and hessian matrix, and express h_p^* .
- 3) In the case $\mathscr{X} = (\mathbb{R}_+)^d$, express h_p^* and ∇h_p^* .
- 4) In the general case, prove that h_p is (p-1)-strongly convex with respect to $\|\cdot\|_p$.