Exercices ONLINE CONVEX OPTIMIZATION Université Paris–Saclay

жS

Let $d \ge 1$ be an integer and \mathscr{X} a nonempty closed convex subset of \mathbb{R}^d .

EXERCICE 1 (*Online linear classification with absolute loss*). — Let $\mathcal{W} \subset \mathbb{R}^d$ be a nonempty set such that

$$\forall x \in \mathscr{X}, \ \forall w \in \mathscr{W}, \quad |\langle w, x \rangle| \leq 1.$$

We consider the following online linear classification problem. At step $t \ge 1$,

- Nature chooses and reveals $w_t \in \mathcal{W}$,
- the Decision Maker chooses $x_t \in \mathscr{X}$
- Nature chooses $z_t \in \{-1, 1\}$

• draw
$$\hat{z}_t = \begin{cases} 1 & \text{with probability } \frac{\langle w_t, x_t \rangle + 1}{2} \\ -1 & \text{with probability } \frac{1 - \langle w_t, x_t \rangle}{2}, \end{cases}$$

- Nature reveals z_t and the Decision Maker incurs loss $|\hat{z}_t z_t|$.
- 1) By considering expectations, explain how the above problem can be reduced to a deterministic problem with convex loss functions $\ell_t(x) = |\langle w_t, x \rangle z_t|$.
- 2) Propose at least two algorithms for this problem and derive corresponding regret guarantees.

EXERCICE 2 (*Alternatives to FTRL and FTL*). — Let $(\ell_t)_{t \ge 1}$ be differentiable losses on \mathscr{X} , H be a mirror map compatible with \mathscr{X} , $x_0 \in \mathscr{X} \cap$ int dom H and consider

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathscr{X}} \left\{ \langle \nabla \ell_t(x_t), x \rangle + \sum_{s=1}^t \mathcal{D}_{\ell_s}(x, x_t) + \mathcal{D}_{\mathcal{H}}(x, x_t) \right\}.$$

- 1) Prove that the above can be interpreted as UMD iterates.
- 2) Derive a regret bound (on $\sum_{t=1}^{T} (\ell_t(x_t) \ell_t(x)))$ and compare with the corresponding regret bound for FTRL.
- 3) Generalize with a sequence of time-dependent mirror maps $(H_t)_{t \ge 0}$ and derive similar results as for FTRL.
- 4) In the case of differentiable strongly convex losses, consider

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathscr{X}} \left\{ \langle \nabla \ell_t(x_t), x \rangle + \sum_{s=1}^t \mathcal{D}_{\ell_s}(x, x_t) \right\}, \quad t \ge 1,$$

and derive regret guarantees.

EXERCICE 3 (*Online Newton step*). — We consider an online convex optimization problem where the loss functions admit quadratic lower bounds as follows. At step $t \ge 1$,

- the Decision Maker chooses $x_t \in \mathscr{X}$
- Nature chooses a loss function ℓ_t such that there exists $g_t \in \partial \ell_t(x_t)$ and M_t a positive semi-definite matrix of size $d \times d$ such that:

$$\forall x \in \mathscr{X}, \quad \ell_t(x) - \ell_t(x_t) \geqslant \langle g_t, x - x_t \rangle + \frac{1}{2} \left\langle x - x_t, \mathbf{M}_t(x - x_t) \right\rangle.$$

 ℓ_t , g_t and M_t are revealed.

Let $\lambda > 0$. For all $t \ge 1$, denote $A_t = \frac{1}{2} \left(\lambda I_d + \sum_{s=1}^{t-1} M_s \right)$, where I_d is the identity matrix of size $d \times d$.

1) For each of the three iterations defined below, establish an upper bound on the regret

$$\sum_{t=1}^{T} \left(\ell_t(x_t) - \ell_t(x) \right), \quad x \in \mathcal{X}, \ T \geqslant 1.$$

Hint. — Use the lemma from the course involved in the analysis of the Vovk– Azoury–Warmuth algorithm.

(i) Let $x_1 \in \mathscr{X}$ and

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathscr{X}} \left\| (x_t - \mathbf{A}_t^{-1} g_t) - x \right\|_{\mathbf{A}_t}, \quad t \ge 1.$$

(ii) Let $x_1 \in \mathscr{X}$ and

$$x_{t+1} = \operatorname*{arg\,min}_{x \in \mathscr{X}} \left\{ \langle -\mathbf{A}_t x_t + g_t, x \rangle + \frac{1}{2} x^\top \mathbf{A}_{t+1} x \right\}, \quad t \ge 1.$$

(iii) Let $y_1 \in \mathbb{R}^d$ and

$$x_{t} = \operatorname*{argmin}_{x \in \mathscr{X}} \left\{ \left\langle -y_{1} + \sum_{s=1}^{t-1} g_{s}, x \right\rangle + \frac{1}{2} \left\langle x, A_{t} x \right\rangle \right\}, \quad t \ge 1.$$

2) Derive the corresponding regret bounds in the special case of *online portfolio optimization* where $\mathscr{X} = \Delta_d$ and where the loss functions are of the form $\ell_t(x) = -\log \langle r_t, x \rangle$ for some $r_t \in (\mathbb{R}^*_+)^d$.

жS