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Consider the approachability framework from the course and correspond-
ing notation. Let € C R? be a closed convex cone satisfying Blackwell’s condi-
tion and & : €° — A an associated oracle such that

x' =Ax forsomel >0 = a(x')=a(x).

The goal is to define two families of parameter-free algorithms for approacha-

bility and apply them to regret minimization on the simplex.
Letp > 0.

1) Let b be a regularizer with domain #° such that for all x € R4 and A > 0,
h(hx) — min b = AP (h(x) ~ min h) .

Consider the DA algorithm for approachability associated with regularizer
h, constant parameter 1, and oracle a:
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Let %, C €° be a nonempty closed set. Let T > 1.
a) Prove that forall A > 0,
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where y, = Zﬁ;} r forallz > 1.



b) Deduce that
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Let H be a mirror map compatible with €°. We assume that H admits a
minimum on R, that the minimizer x belongs to €°, and that forall x € R4
and A > 0,

H(\x) —minH = 2f (H(x) — min H> .

Consider the OMD algorithm for approachability associated with regular-
izer H, constant tep-size 1, oracle a, and initial attion 4; = a(x;):

%,y = aigmax {(VH(x,) + ., x) ~H(x)} and 4,y —a (%), t>1
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Prove that forall T > 1,
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Letl < p < 2. Consider algorithms from the above families associated with
e, regularizer on €° and ¢ » mirror map on R4 respeively:

1, 2 I, 2
hpzz||-||p+1ggo and Hp:§||-||P.
Using the fact that b, and H,, are (p — 1)-strongly convex for |- HP’ derive

correébonding guarantees.

Let L > 0. In the context of regret minimization on the simplex, assume
that payoff vectors (u,),-; are bounded as |, . < L forall# > 1. Then de-
rive guarantees for the above algorithms corresponding to €, regularizer and
mirror map. Which value of p minimizes the regret bounds thus obtained?
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