EXERCICES BLACKWELL'S APPROACHABILITY

Université Paris-Saclay

36

Consider the approachability framework from the course and corresponding notation. Let $\mathscr{C} \subset \mathbb{R}^d$ be a closed convex cone satisfying Blackwell's condition and $\alpha: \mathscr{C}^{\circ} \to \mathscr{A}$ an associated oracle such that

$$x' = \lambda x$$
 for some $\lambda > 0$ \implies $\alpha(x') = \alpha(x)$.

The goal is to define two families of parameter-free algorithms for approachability and apply them to regret minimization on the simplex.

Let $\beta > 0$.

1) Let *b* be a regularizer with domain \mathscr{C}° such that for all $x \in \mathbb{R}^d$ and $\lambda \geqslant 0$,

$$h(\lambda x) - \min h = \lambda^{\beta} \left(h(x) - \min h \right).$$

Consider the DA algorithm for approachability associated with regularizer b, constant parameter 1, and oracle α :

$$a_t = \alpha \left(\nabla h^* \left(\sum_{s=1}^{t-1} r_s \right) \right), \quad t \geqslant 1.$$

Let $\mathscr{X}_0\subset\mathscr{C}^\circ$ be a nonempty closed set. Let $T\geqslant 1$.

a) Prove that for all $\lambda > 0$,

$$\max_{\mathbf{x} \in \lambda \mathcal{X}_0} \left\langle \sum_{t=1}^{\mathrm{T}} r_t, \mathbf{x} \right\rangle \leqslant \lambda^{\beta} \left(\max_{\mathcal{X}_0} h - \min h \right) + \sum_{t=1}^{\mathrm{T}} \mathbf{D}_{b^*} (y_t + r_t, y_t),$$

where $y_t = \sum_{s=1}^{t-1} r_s$ for all $t \ge 1$.

b) Deduce that

$$\max_{\mathbf{x} \in \mathcal{X}_0} \left\langle \sum_{t=1}^{\mathrm{T}} r_t, \mathbf{x} \right\rangle \leqslant 2 \left(\max_{\mathcal{X}_0} h - \min h \right)^{1/\beta} \left(\sum_{t=1}^{\mathrm{T}} \mathbf{D}_{h^*} (y_t + r_t, y_t) \right)^{1 - 1/\beta}.$$

2) Let H be a mirror map compatible with \mathscr{C}° . We assume that H admits a minimum on \mathbb{R}^d , that the minimizer x_1 belongs to \mathscr{C}° , and that for all $x \in \mathbb{R}^d$ and $\lambda \geq 0$,

$$H(\lambda x) - \min H = \lambda^{\beta} \left(H(x) - \min H \right).$$

Consider the OMD algorithm for approachability associated with regularizer H, constant step-size 1, oracle α , and initial action $a_1 = \alpha(x_1)$:

$$x_{t+1} = \operatorname*{arg\,max}_{x \in \mathscr{C}^{\circ}} \left\{ \left\langle \nabla \mathsf{H}(x_t) + r_t, x \right\rangle - \mathsf{H}(x) \right\} \quad \text{ and } \quad a_{t+1} = \alpha \left(x_{t+1} \right), \quad t \geqslant 1.$$

Prove that for all $T \ge 1$,

$$\max_{x \in \mathcal{X}_0} \left\langle \sum_{t=1}^{T} r_t, x \right\rangle \leqslant 2 \left(\max_{\mathcal{X}_0} \mathbf{H} - \min \mathbf{H} \right)^{1/\beta} \left(\sum_{t=1}^{T} \mathbf{D}_{\mathbf{H}^*} (\nabla \mathbf{H}_t(x_t) + r_t, \nabla \mathbf{H}(x_t)) \right)^{1-1/\beta}.$$

3) Let $1 . Consider algorithms from the above families associated with <math>\ell_p$ regularizer on \mathscr{C}° and ℓ_p mirror map on \mathbb{R}^d respectively:

$$b_p = \frac{1}{2} \| \cdot \|_p^2 + I_{\mathscr{C}^{\circ}} \quad \text{and} \quad H_p = \frac{1}{2} \| \cdot \|_p^2.$$

Using the fact that h_p and H_p are (p-1)-strongly convex for $\|\cdot\|_p$, derive corresponding guarantees.

4) Let L > 0. In the context of regret minimization on the simplex, assume that payoff vectors $(u_t)_{t\geqslant 1}$ are bounded as $\|u_t\|_{\infty} \leqslant L$ for all $t\geqslant 1$. Then derive guarantees for the above algorithms corresponding to ℓ_p regularizer and mirror map. Which value of p minimizes the regret bounds thus obtained?