Exercices FIRST-ORDER OPTIMIZATION

Université Paris-Saclay

36

EXERCICE 1 (Smooth and strongly convex functions). — Let L > 0 and $f : \mathbb{R}^d \to \mathbb{R}$ a L-smooth (for $\|\cdot\|_2$) differentiable function that admits a global minimizer $x_* \in \mathbb{R}^d$.

1) Prove that for all $x, x' \in \mathbb{R}^d$,

$$f(x') \geqslant f(x) + \left\langle \nabla f(x), x' - x \right\rangle + \frac{1}{2L} \left\| \nabla f(x') - \nabla f(x) \right\|_{2}^{2}.$$

Indication: For each $x \in \mathbb{R}^d$, consider function $g_x : x' \mapsto f(x') - \langle \nabla f(x), x' \rangle$ and use Lemma 7.4.1 from the lecture notes.

2) Deduce that for all $x, x' \in \mathbb{R}^d$,

$$\left\langle \nabla f(x') - \nabla f(x), x' - x \right\rangle \geqslant \frac{1}{L} \left\| \nabla f(x') - \nabla f(x) \right\|_{2}^{2}.$$

Let K > 0. We now further assume that f is also K-strongly convex for $\|\cdot\|_2$.

- 4) Prove that $f \frac{K}{2} \| \cdot \|_2^2$ is (L K)-smooth for $\| \cdot \|_2$.
- 5) Deduce that for all $x, x' \in \mathbb{R}^d$,

$$\begin{split} \mathbf{D}_f(x',x) \geqslant \frac{1}{2(\mathbf{L}-\mathbf{K})} \left\| \nabla f(x') - \nabla f(x) \right\|_2^2 + \frac{\mathbf{K}\mathbf{L}}{2(\mathbf{L}-\mathbf{K})} \left\| x' - x \right\|_2^2 \\ - \frac{\mathbf{K}}{\mathbf{L}-\mathbf{K}} \left\langle \nabla f(x') - \nabla f(x), x' - x \right\rangle. \end{split}$$

6) Deduce that for all $x, x' \in \mathbb{R}^d$,

$$\left\langle \nabla f(x') - \nabla f(x), x' - x \right\rangle \geqslant \frac{\mathrm{KL}}{\mathrm{K} + \mathrm{L}} \left\| x' - x \right\|_2^2 + \frac{1}{\mathrm{K} + \mathrm{L}} \left\| \nabla f(x') - \nabla f(x) \right\|_2^2.$$

EXERCICE 2 (Smooth and strongly convex optimization with Gradient Descent). — Let L, K > 0, $f: \mathbb{R}^d \to \mathbb{R}$ a function that we assume differentiable, L-smooth and K-strongly convex for $\|\cdot\|_2$. We assume that f admits a global minimizer $x_* \in \mathbb{R}^d$. Let $x_1 \in \mathbb{R}^d$, $(\gamma_t)_{t \ge 1}$ a positive sequence and for $t \ge 1$, consider

$$x_{t+1} = x_t - \gamma_t \nabla f(x_t).$$

- 1) Asssume that $\gamma_t = 1/L$, and for all $t \ge 1$.
 - a) Prove that for all $t \ge 1$,

$$\left\|\boldsymbol{x}_{t+1} - \boldsymbol{x}_*\right\|^2 \leqslant \left(1 - \frac{\mathbf{K}}{\mathbf{L}}\right) \left\|\boldsymbol{x}_t - \boldsymbol{x}_*\right\|^2.$$

- b) For $T \ge 1$, deduce an upper bound on $f(x_{T+1}) f(x_*)$.
- 2) Assume that $\gamma_t=2/(K+L)$ for all $t\geqslant 1$. Let $t\geqslant 1$.
 - a) Using the previous exercice, prove that

$$\frac{1}{\mathbf{L} + \mathbf{K}} \left\| \nabla f(\mathbf{x}_t) \right\|_2^2 + \frac{\mathbf{K} \mathbf{L}}{\mathbf{L} + \mathbf{K}} \left\| \mathbf{x}_t - \mathbf{x}_* \right\|_2^2 \leqslant \left\langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_* \right\rangle.$$

b) Deduce that

$$\|x_{t+1} - x_*\|_2^2 \leqslant \left(1 - \frac{2}{L/K + 1}\right)^2 \|x_t - x_*\|_2^2.$$

c) Deduce, for $T \ge 1$, an upper bound on $f(x_{T+1}) - f(x_*)$.

EXERCICE 3 (*Smooth nonconvex optimization*). — Let L > 0 and $f : \mathbb{R}^d \to \mathbb{R}$ a L-smooth (for $\|\cdot\|_2$) differentiable function that admits a global minimizer $x_* \in \mathbb{R}^d$. Let $x_1 \in \mathbb{R}^d$ and for $t \ge 1$, consider

$$x_{t+1} = x_t - \frac{1}{L} \nabla f(x_t).$$

1) Using regret bounds, prove that for all $T \ge 1$,

$$\frac{1}{T} \sum_{t=1}^{T} \|\nabla f(x_t)\|_2^2 \leqslant L^2 \|x_1 - x_*\|_2^2.$$

2) Using the fact that for all $t \ge 1$, $D_f(x_{t+1}, x_t) \le \frac{L}{2} \|x_{t+1} - x_t\|_2^2$, prove that for all $T \ge 1$

$$\frac{1}{T} \sum_{t=1}^{T} \|\nabla f(x_t)\|_2^2 \leqslant \frac{2L(f(x_1) - f(x_*))}{T}.$$

- 3) Which of these two guarantees is stronger?
- 4) Let $\mathscr{X} \subset \mathbb{R}^d$ be a closed convex set, and assume that f admits a minimizer $\tilde{x}_* \in \mathscr{X}$ on \mathscr{X} . Let $\tilde{x}_1 \in \mathbb{R}^d$ and for $t \geqslant 1$,

$$\tilde{\mathbf{x}}_{t+1} = \Pi_{\mathcal{X}} \left(\tilde{\mathbf{x}}_t - \frac{1}{\mathbf{L}} \nabla f(\tilde{\mathbf{x}}_t) \right).$$

For $x \in \mathbb{R}^d$, define

$$\mathbf{G}(\mathbf{x}) = \mathbf{L}\left(\mathbf{x} - \Pi_{\mathcal{X}}(\mathbf{x} - \frac{1}{\mathbf{L}}\nabla f(\mathbf{x}))\right).$$

Generalize the above analysis and establish for $T\geqslant 1$ an upper bound on

$$\frac{1}{T} \sum_{t=1}^{T} \left\| G(\tilde{x}_t) \right\|_2^2.$$

EXERCICE 4 (*Dual averaging for stochastic nonsmooth convex optimization*). — In the context of stochastic nonsmooth convex optimization from Section 6.4, define Dual Averaging iterates with time-dependent parameters and derive guarantees that get rid of the log T factor.