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EXERCICE 1 (Smooth and strongly convex functions). — LetL > Oand f : RY —
R a L-smooth (for | - |,) differentiable funtion that admits a global minimizer
x, € R4,

1) Prove that for all x, x” € R%,
F6) > F) +(Vf () = 5) + 50 IV ()~ V(2

Indication: For each x € RY, consider function g, : x' + f(x')—(V f(x), x
and use Lemma 7.4.1 from the lecture notes.

2) Deduce that forall x, x” € R,

(Vf() =~ Vi) =) > LIV~ V)]
Let K > 0. We now further assume that f is also K-strongly convex for || - ,.
4) Prove that f — X |- | is (L — K)-smooth for | - |
5) Deduce that for all x, x” € R%,

1 KL

Dy('s %) > 50— IVF) = VI, + 5 K)nx'—xni

—m< f&") = Vf(x),x" —x)



6) Deduce that forall x, x” € R,

/ ’ KL ’ 2
(VI = V)% =) > i ¥ = sl IV ) = V()1

EXERCICE 2 (Smooth and strongly convex optimization with Gradient Descent). —
Let L,K > 0, f : R* — Ra function that we assume differentiable, L-smooth
and K-gtrongly convex for || - ||,. We assume that f admits a global minimizer

x, € R% Let x; € RY, (y,),5 a positive sequence and for ¢ > 1, consider
X1 =%, —Y,Vf(x,).
1) Asssume thaty, =1/L,and forall r > 1

a) Prove that forall z > 1,

2 K 2
e =l < (1= ) I = .17

b) For T > 1, deduce an upper bound on f(xr;) — f(x,).
2) Assumethaty, =2/(K+ L) forallz > 1. Letz > 1.

a) Using the previous exercice, prove that

1 KL

b) Deduce that

2
2 2 2
b=l < (1= ) o= =lE-

c¢) Deduce, for T > 1, an upper bound on f(x1,;) — f(x,).

EXERCICE 3 (Smooth nonconvex optimization). — Let L > 0 and f : R4 — R
a L-smooth (for | -||,) differentiable function that admits a global minimizer

x, € R Letx; € Rd and for ¢ > 1, consider

1
Xpp] = Xp — Evf('xt>'

2



1) Using regret bounds, prove that forall T > 1,
2
1B f )l < Ll

2) Using the fact thatforallz > 1, D f(x,44, x,) < Lllx, — xtH;, prove that for
all T >

1 & 2 2L(f(x) — f(x,))
T ;1 IV f(x), < IT :

3) Which of these two guarantees is stronger?

4) Let % C R? be a closed convex set, and assume that f admits a minimizer
X, € Zon%. Letx, € R% and for ¢ > 1,

Yo =T, (5, - [ V().
For x € R?, define
G(x) = L (x My (x— %Vf(x))) .

Generalize the above analysis and establish for T > 1 an upper bound on
T
2 %),

EXERCICE 4 (Dual averaging for stochastic nonsmooth convex optimization). — In
the context of stochastic nonsmooth convex optimization from Se&ion 6.4, de-
fine Dual Averaging iterates with time-dependent parameters and derive guar-
antees that get rid of the log T fa&tor.



