Exercices REGRET LEARNING IN GAMES Université Paris–Saclay

ĸ

Let $m, n \ge 1$ be integers, $A \in \mathbb{R}^{m \times n}$, $\|\cdot\|_{(m)}$ and $\|\cdot\|_{(n)}$ norms on \mathbb{R}^m and \mathbb{R}^n respectively and denote $\|\cdot\|_{(m*)}$ and $\|\cdot\|_{(n*)}$ their respective dual norms, $b^{(m)}$ and $b^{(n)}$ regularizers on Δ_m and Δ_n , $((a_t, b_t, y_t, z_t))_{t\ge 1}$ a sequence in $\mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^n$ and $K^{(m)}$, $K^{(n)}$, $\eta, \eta' > 0$. We assume that

- $((a_t, y_t))_{t \ge 1}$ is a sequence of strict UMD iterates associated with regularizer $b^{(m)}$ and dual increments $(\eta A(2b_t b_{t-1}))_{t \ge 1}$ (with convention $b_0 = 0$),
- $((b_t, z_t))_{t \ge 1}$ is a sequence of strict UMD iterates associated with regularizer $h^{(n)}$ and dual increments $(\eta' A^{\top} a_{t+1})_{t \ge 1}$,
- $b^{(m)}$ is $K^{(m)}$ -strongly convex for $\|\cdot\|_{(m)}$,
- $b^{(n)}$ is $K^{(n)}$ -strongly convex for $\|\cdot\|_{(n)}$.

Let $T \ge 1$, $a \in \Delta_m$ and $b \in \Delta_n$.

- 1) Informally compare the above iterates with optimistic regret learning in twoplayer zero-sum games.
- 2) Recall the bound on

$$\sum_{t=1}^{\mathrm{T}} \left< \eta \mathrm{A} b_t, \, a-a_t \right>$$
 .

3) Prove that

$$\sum_{t=1}^{\mathrm{T}} \left< \eta' \mathrm{A}^{\mathrm{T}} a_{t+1}, b - b_{t+1} \right> \leqslant \mathrm{D}_{b^{(n)}}(b, b_1; z_1) - \frac{\mathrm{K}^{(n)}}{2} \sum_{t=1}^{\mathrm{T}} \left\| b_{t+1} - b_t \right\|_{(m)}^2.$$

- 4) Deduce a convergence guarantee in the context of solving the two-player zero-sum game associated with matrix A.
- 5) Express $(a_t)_{t \ge 1}$ and $(b_t)_{t \ge 1}$ in the special case of $h^{(m)}$ and $h^{(n)}$ being the entropic regularizers on Δ_m and Δ_n respectively. Write the corresponding convergence guarantee.
- 6) Conduct numerical experiments to compare the performance of the algorithm from the last question with the optimistic exponential weights algorithm, the regular exponential weights algorithm, RM, RM+.

жÇ