Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

ĸ

ONLINE LINEAR CLASSIFICATION WITH ABSOLUTE LOSS

Let $d \ge 1$, $\mathscr{X} \subset \mathbb{R}^d$ a nonempty closed convex set and $\mathscr{W} \subset \mathbb{R}^d$ a nonempty set such that

 $\forall x \in \mathscr{X}, \ \forall w \in \mathscr{W}, \quad |\langle w, x \rangle| \leq 1.$

We consider the following online linear classification problem. At step $t \ge 0$,

- Nature chooses and reveals $w_t \in \mathcal{W}$,
- the Decision Maker chooses $x_t \in \mathscr{X}$
- Nature chooses $z_t \in \{-1, 1\}$
- draw $\hat{z}_t = \begin{cases} 1 & \text{with probability } \frac{\langle w_t, x_t \rangle + 1}{2} \\ -1 & \text{with probability } \frac{1 \langle w_t, x_t \rangle}{2}, \end{cases}$
- Nature reveals z_t and the Decision Maker incurs loss $|\hat{z}_t z_t|$.
- 1) By considering expectations, explain how the above problem can be reduced to a deterministic problem with convex loss functions $\ell_t(x) = |\langle w_t, x \rangle z_t|$.

2) Propose at least two algorithms for this problem and derive corresponding regret guarantees.