EVALUATION

ONLINE LEARNING
LINKS WITH OPTIMIZATION AND GAMES
UNIVERSITE PARIS—SACLAY

VARIANTS OF ADAGRAD-NORM AND APPLICATION TO GAMES

Letd > 1, % C R?anonempty closed convex set, y,n, L > 0, xy € %, and
(#,),50 a sequence in R%. We consider

o AdaGrad-Norm, defined as

xtH:H% (xt-l-%%t), t>0’
25:0 ||us||2

with convention 0/0 = 0;

o AdaGrad-DA-Norm, defined as

t
(DA) ! .
X, n%(— 22%),t>0,
VL2 + g s =0

o AdaGrad-Hybrid-Norm, defined as

(hyb) thYb)
xt—i-}i =TIl Nl N +u, , t=0,
t

1

1)

where n, = V]/\/LZ + Zi;}) ||”5H§

Assume that forall # > 0, [u,|, < L. For T > 0 and x € %, establish an
upper bound on the regret

s DA T hyb
) <ut,x—x£)> resp. Y, <ut,x—x£ Y)> :
t=0 t=0

Hint. — Fort > 0, consider mirror map

—1 2
VL2 + 20

H,(x) = 2

Ix[>, xR

and associated regularizer b, = H, + 1.

Letm, n > 1beintegers,and A € R™*". Apply each of the above algorithms
for solving the two-player zero-sum game associated with A and derive cor-
responding guarantees.

Perform numerical experiments in the context of solving two-player zero-
sum games and compare the performance of the three above algorithms with
RM, RM+ and the exponential weights algorithm. Use the following func-
tion to compute the Euclidean projection onto the simplex.

def projection_simplex(y):
n_features = y.shape[0]
z = np.sort(y) [::-1]
cssv = np.cumsum(z) - 1
ind = np.arange(n_features) + 1
cond = u - cssv / ind > O
rho = ind[cond] [-1]
theta = cssv[cond] [-1] / float(rho)
w = np.maximum(y - theta, 0)
return w

BoNus. — Add to the numerical experiments the optimistic variant of each
algorithm.
BonNus. — Rewrite the above Python funéion mathematically and prove

that it indeed computes the Euclidean projection onto the simplex.

2

6) BoNus. — Also study the diagonal variants of each above algorithm and
include them in the numerical experiments.

AS

