
Evaluation
Online learning

links with optimization and games
Université Paris–Saclay

•

variants of adagrad-norm and application to games

Let d ⩾ 1, 𝒳 ⊂ Rd a nonempty closed convex set, γ, η, L > 0, x0 ∈ 𝒳, and
(ut)t⩾0 a sequence in Rd. We consider

• AdaGrad-Norm, defined as

xt+1 = Π𝒳
⎛⎜⎜
⎝
xt + γ

√∑t
s=0 ‖us‖

2
2

ut
⎞⎟⎟
⎠
, t ⩾ 0,

with convention 0/0 = 0;
• AdaGrad-DA-Norm, defined as

x(DA)
t+1 = Π𝒳

⎛⎜⎜
⎝

η

√L2 + ∑t
s=0 ‖us‖

2
2

t
􏾜
s=0

ut
⎞⎟⎟
⎠
, t ⩾ 0;

• AdaGrad-Hybrid-Norm, defined as

x(hyb)
t+1 = Π𝒳 (ηt+1(

x(hyb)
t
ηt

+ ut)) , t ⩾ 0,

1



where ηt = η/√L2 + ∑t−1
s=0 ‖us‖

2
2.

1) Assume that for all t ⩾ 0, ‖ut‖2 ⩽ L. For T ⩾ 0 and x ∈ 𝒳, establish an
upper bound on the regret

T
􏾜
t=0

⟨ut, x − x(DA)
t ⟩ (resp.

T
􏾜
t=0

⟨ut, x − x(hyb)
t ⟩) .

Hint. — For t ⩾ 0, consider mirror map

Ht(x) =
√L2 + ∑t−1

s=0 ‖us‖
2
2

2η ‖x‖22 , x ∈ Rd,

and associated regularizer ht = Ht + I𝒳.
2) Letm, n ⩾ 1 be integers, andA ∈ Rm×n. Apply each of the above algorithms

for solving the two-player zero-sum game associated withA and derive cor-
responding guarantees.

3) Perform numerical experiments in the context of solving two-player zero-
sum games and compare the performance of the three above algorithmswith
RM, RM+ and the exponential weights algorithm. Use the following func-
tion to compute the Euclidean projection onto the simplex.

def projection_simplex(y):
n_features = y.shape[0]
z = np.sort(y)[::-1]
cssv = np.cumsum(z) - 1
ind = np.arange(n_features) + 1
cond = u - cssv / ind > 0
rho = ind[cond][-1]
theta = cssv[cond][-1] / float(rho)
w = np.maximum(y - theta, 0)
return w

4) Bonus. —Add to the numerical experiments the optimistic variant of each
algorithm.

5) Bonus. — Rewrite the above Python function mathematically and prove
that it indeed computes the Euclidean projection onto the simplex.

2



6) Bonus. — Also study the diagonal variants of each above algorithm and
include them in the numerical experiments.

•

3


