Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

жS

ADAGRAD WITH NORMALIZATION

Let $d \ge 1$, $(u_t)_{t\ge 1}$ a sequence in \mathbb{R}^d , $x_1 \in \mathbb{R}^d$, $\alpha \ge 0$ and $\gamma > 0$. Consider

$$x_{t+1} = x_t + \frac{\gamma}{\sqrt{\sum_{s=1}^t \left\|u_t\right\|^{2(1-\alpha)}}} \frac{u_t}{\left\|u_t\right\|^{\alpha}}, \quad t \ge 1$$

- 1) Prove that $(x_t)_{t \ge 1}$ corresponds to AdaGrad-Norm iterates with some alternative payoff vectors.
- 2) Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable convex function that admits a global minimizer $x_* \in \mathbb{R}^d$. Consider the iterates $(x_t)_{t \ge 1}$ defined as above with $u_t = -\nabla f(x_t)$. Let $T \ge 1$ and

$$\bar{x}_{\mathrm{T}} = \frac{\sum_{t=1}^{\mathrm{T}} \|\nabla f(x_t)\|^{-\alpha} x_t}{\sum_{t=1}^{\mathrm{T}} \|\nabla f(x_t)\|^{-\alpha}}.$$

- a) Establish an upper bound on $f(\bar{x}_{T}) f(x_{*})$.
- b) Let G > 0 and assume in this question that f is G-Lipschitz continuous for $\|\cdot\|_2$. Establish convergence guarantees in the cases $\alpha = 1$ and $\alpha = 2$.

- c) Let L > 0 and assume in this question that f is L-smooth for $\|\cdot\|_2$. Establish convergence guarantees in the cases $\alpha = 1$ and $\alpha = 2$.
- d) What guarantees can you establish for other values of α ?
- 3) BONUS. Define and analyze a variant of AdaGrad-Diagonal with normalization.

жS