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adaptive diagonal scalings for q-learning

This project requires familiarity with reinforcement learning1

Let λ ∈ (0, 1). Consider a Markov decision process (𝒮,𝒜,ℛ,p) where 𝒮
is the set of states, 𝒜 the set of actions, ℛ ⊂ R the set of possible rewards and
p ∶ 𝒮 × 𝒜 × 𝒮 × ℛ the transition function where

p(r, s′|s, a) ∶= p(s, a, r, s′), (s, a, r, s′) ∈ 𝒮 × 𝒜 × ℛ × 𝒮,

corresponds to theprobability of obtaining reward r andmoving tostate s′ when
action a is chosen at state s. All sets are finite.

An action-value function is a vector q = (q(s, a))(s,a)∈𝒮×𝒜 ∈ R𝒮×𝒜. The
Bellman optimality operator (for action-value functions) B∗ ∶ R𝒮×𝒜 → R𝒮×𝒜

is defined as

(B∗q)(s, a) = 
(r,s′)∈𝒮×R

p(r, s′|s, a) (r + λmax
a′∈𝒜

q(s′, a′)) , (s, a) ∈ 𝒮 × 𝒜,

1see e.g.https://joon-kwon.github.io/rl-ups/reinforcement-learning-lecture-notes.
pdf
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wherewe simply denoteB∗q instead ofB∗(q). B∗ is known to be a contraction: it
thus admits a unique fixed point q∗, which is the optimal action-value function.

Without knowledge of p, evaluations of the map B∗ cannot be computed,
but astochastic estimator canbe obtained as follows. For q ∈ R𝒮×𝒜 and (s, a) ∈
𝒮 × 𝒜, if (R, S′) ∼ p( ⋅ |s, a), in other words if R, S′ are the actual (random)
reward and new state obtained by choosing action a at state s, then

(B̂∗q)(R, S′) = R+ λmax
a∈𝒜

q(S′, a)

is an unbiaised estimator of (B∗q)(s, a).
Traditional Q-learning is defined as follows. Let q0 ∈ R𝒮×𝒜 be an initial

action-value function. For all t ⩾ 0, let (St,At, Rt, S′t)be such that (Rt, S′t)|St,At ∼
p( ⋅ |St,At) (often, S′t = St+1, unless the episode terminates), and

qt+1(s, a) = {(1− γt)qt(s, a) + γt ((B̂∗qt)(Rt, S′t)) if (s, a) = (St,At)
qt(s, a) otherwise,

where γt ∈ (0, 1). Q-learning is therefore an asynchronous2 stochastic fixed
point iteration.

1) Similarly to the way AdaGrad-Norm is used to solve fixed point problems,
define AdaGrad-Diagonal in the context of Q-learning.

Numerous variants of AdaGrad have achieved great success in deep learning op-
timization. We here consider RMSprop andAdam. Let d ⩾ 1 and x0 ∈ Rd. For
a sequence (ut)t⩾0 in Rd, γ > 0, the associated RMSprop (resp. Adam) iterates
are defined component-wise for t ⩾ 0, and 0 ⩽ i ⩽ d as

xt+1,i = xt,i + γ

√∑t
τ=0 βt−τu2τ,i

ut,i,

⎛⎜⎜
⎝
resp. xt+1,i = xt,i + γ

√∑t
τ=0 β

t−τ
2 u2τ,i

t

τ=0
βt−τ1 uτ,i

⎞⎟⎟
⎠
,

where β = .99, β1 = .9 and β2 = .999 are common default values.

2) Adapt RMSprop and Adam to the context of Q-learning.
2meaning that not all components are updated at each iteration
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3) Perform numerical experiments to compare the performance of the above
algorithmswith traditionnalQ-learning. Consider environmentswithfinite
number of states and actions from e.g. the Gymnasium package3.

•

3https://gymnasium.farama.org/
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