Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

ŝ

ADAPTIVE DIAGONAL SCALINGS FOR Q-LEARNING

This project requires familiarity with reinforcement learning¹

Let $\lambda \in (0, 1)$. Consider a Markov decision process $(\mathcal{S}, \mathcal{A}, \mathcal{R}, p)$ where \mathcal{S} is the set of states, \mathcal{A} the set of actions, $\mathcal{R} \subset \mathbb{R}$ the set of possible rewards and $p : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{R}$ the transition function where

$$p(r, s'|s, a) := p(s, a, r, s'), \quad (s, a, r, s') \in \mathscr{P} \times \mathscr{A} \times \mathscr{R} \times \mathscr{P},$$

corresponds to the probability of obtaining reward r and moving to state s' when action a is chosen at state s. All sets are finite.

An action-value function is a vector $q = (q(s, a))_{(s,a) \in \mathscr{P} \times \mathscr{A}} \in \mathbb{R}^{\mathscr{P} \times \mathscr{A}}$. The Bellman optimality operator (for action-value functions) $B_* : \mathbb{R}^{\mathscr{P} \times \mathscr{A}} \to \mathbb{R}^{\mathscr{P} \times \mathscr{A}}$ is defined as

$$(\mathbf{B}_*q)(s,a) = \sum_{(r,s')\in\mathscr{S}\times\mathbb{R}} p(r,s'|s,a) \left(r + \lambda \max_{a'\in\mathscr{A}} q(s',a')\right), \quad (s,a)\in\mathscr{S}\times\mathscr{A},$$

¹sec e.g. https://joon-kwon.github.io/rl-ups/reinforcement-learning-lecture-notes.pdf

where we simply denote B_*q instead of $B_*(q)$. B_* is known to be a contraction: it thus admits a unique fixed point q_* , which is the optimal action-value function.

Without knowledge of p, evaluations of the map B_* cannot be computed, but a stochastic estimator can be obtained as follows. For $q \in \mathbb{R}^{\mathscr{S} \times \mathscr{A}}$ and $(s, a) \in \mathscr{S} \times \mathscr{A}$, if $(\mathbb{R}, S') \sim p(\cdot | s, a)$, in other words if \mathbb{R} , S' are the actual (random) reward and new state obtained by choosing action a at state s, then

$$(\hat{B}_*q)(R,S') = R + \lambda \max_{a \in \mathcal{A}} q(S',a)$$

is an unbiaised estimator of $(B_*q)(s, a)$.

Traditional Q-learning is defined as follows. Let $q_0 \in \mathbb{R}^{\mathscr{S} \times \mathscr{A}}$ be an initial action-value function. For all $t \ge 0$, let (S_t, A_t, R_t, S'_t) be such that $(R_t, S'_t)|S_t, A_t \sim p(\cdot |S_t, A_t)$ (often, $S'_t = S_{t+1}$, unless the episode terminates), and

$$q_{t+1}(s, a) = \begin{cases} (1 - \gamma_t)q_t(s, a) + \gamma_t \left((\hat{B}_*q_t)(R_t, S'_t) \right) & \text{if } (s, a) = (S_t, A_t) \\ q_t(s, a) & \text{otherwise,} \end{cases}$$

where $\gamma_t \in (0, 1)$. Q-learning is therefore an asynchronous² stochastic fixed point iteration.

1) Similarly to the way AdaGrad-Norm is used to solve fixed point problems, define AdaGrad-Diagonal in the context of Q-learning.

Numerous variants of AdaGrad have achieved great success in deep learning optimization. We here consider RMSprop and Adam. Let $d \ge 1$ and $x_0 \in \mathbb{R}^d$. For a sequence $(u_t)_{t\ge 0}$ in \mathbb{R}^d , $\gamma > 0$, the associated RMSprop (resp. Adam) iterates are defined component-wise for $t \ge 0$, and $0 \le i \le d$ as

$$\begin{split} x_{t+1,i} &= x_{t,i} + \frac{\gamma}{\sqrt{\sum_{\tau=0}^{t} \beta^{t-\tau} u_{\tau,i}^2}} u_{t,i}, \\ \left(\text{resp.} \quad x_{t+1,i} = x_{t,i} + \frac{\gamma}{\sqrt{\sum_{\tau=0}^{t} \beta_2^{t-\tau} u_{\tau,i}^2}} \sum_{\tau=0}^{t} \beta_1^{t-\tau} u_{\tau,i} \right), \end{split}$$

where $\beta=.99, \beta_1=.9$ and $\beta_2=.999$ are common default values.

2) Adapt RMSprop and Adam to the context of Q-learning.

²meaning that not all components are updated at each iteration

3) Perform numerical experiments to compare the performance of the above algorithms with traditionnal Q-learning. Consider environments with finite number of states and actions from e.g. the Gymnasium package³.

¥S,

³https://gymnasium.farama.org/