Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

ĸ

ASYNCHRONOUS FIXED POINT ITERATIONS

Let $d \ge 1$, $\mathscr{X} \subset \mathbb{R}^d$ a nonempty closed convex set, and $F : \mathscr{X} \to \mathscr{X}$ a map. For $1 \le i \le d$, denote $F^{|i} : \mathscr{X} \to \mathscr{X}$ the map defined as

$$\mathbf{F}^{|i|}(x)_j = \begin{cases} \mathbf{F}(x)_j & \text{if } j = i \\ x_j & \text{otherwise,} \end{cases} \qquad 1 \leqslant j \leqslant d.$$

- 1) Prove that $x \in \mathscr{X}$ is a fixed point of F if, and only if, for all $1 \leq i \leq d$, it is a fixed point of $F^{|i|}$.
- 2) Prove that if F is nonexpansive, then $F^{|i|}$ is nonexpansive for all $1 \le i \le d$.
- 3) Let L > 0. Prove that if $\frac{1}{L}F + (1 \frac{1}{L})I$ is nonexpansive, then $\frac{1}{2}(I F^{|i|})$ is L-co-coercive for all $1 \le i \le d$.
- 4) Assume that F is nonexpansive and let x_* be a fixed point of F. Let $(i_t)_{t \ge 0}$ be a sequence in $\{1, ..., d\}$, $(\gamma_t)_{t \ge 0}$ a sequence in (0, 1), $x_0 \in \mathcal{X}$, and for $t \ge 0$,

$$x_{t+1} = (1 - \gamma_t)x_t + \gamma_t \mathbf{F}^{|i_t|}(x_t).$$

The above is an asynchronous counterpart of the Krasnoselskii-Mann iteration. Let $T \geqslant 0.$ Establish a guarantee on

$$\min_{0\leqslant t\leqslant \mathrm{T}}\left\|\mathrm{F}(x_{t})-x_{t}\right\|_{2}.$$

5) Let L > 0 and assume that $\frac{1}{L}F + (1 - \frac{1}{L})I$ is nonexpansive. Define and analyze an asynchronous fixed point iteration for F, based on AdaGrad-Norm (resp. AdaGrad-Diagonal).