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ON THE CHAMBOLLE-POCK METHOD

Consider an obje&ive function f + ¢, where f : R4 — R is a convex differen-
tiable func&ion, and ¢ : R4 — R U {+co} a proper, convex, lower semicontinu-
ous fun&ion. We assume that the proximal operator associated with ¢:

1
Prox,(x) = argrgjn {q>(x’) + 2 |x" — xHi} , xcR4
x'e

is easily computable. The proximal gradient method, aka forward-backward split-
ting is defined as follows: let x, € R such that 8¢(xy) # @, (7,)¢ a positive
sequence, and

X1 = Prox, 4 (x, — 7. Vf(x)), t=0.

1) Prove that the proximal gradient method is an instance of UMD iterates.

2) Let L > 0. In the case where f is L-smooth for | - |, establish for the proxi-
mal gradient method a convergence guarantee that extends the classical guar-
antee for projected gradient descent.



The remaining of this evaluation subje&t can be considered as bonus. We
now turn to Douglas—Rachford ¢plitting. Consider objective function f + ¢
where f, g : RY -5 RU {400} are simply assumed convex, proper, and lower
semicontinuous. A point x, € R is a minimizer of f + g if, and only if, 0 €
df(x,)+ dg(x,). We assume that such a solution exists. Consider operator

F(x) = x 4 Prox, (2 - Prox,(x) — x) — Prox(x), «x€ R4
The Douglas-Rachford iteration is defined as x, € R? and
x,.1 = F(x,), t>0.
3) Prove that x, € R is a fixed point of F if, and only if,

0 € 3 f(Proxy(x,)) + dg(Prox,(x,)).

4) Prove that F is co-coercive.
5) Derive a guarantee for the Douglas—Rachford iteration.

6) Propose an AdaGrad-based iteration for finding an approximate fixed point
of F and derive corresponding guarantees.

7) Condué a similar approach for the Chambolle-Pock method.
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