Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

жS

SOLVING GAMES: EXTRAPOLATION VS OPTIMISM

Let $d \ge 1$ and let h_{ent} be the entropic regularizer on the simplex Δ_d .

1) Let $x \in \Delta_d$ such that $x_i > 0$ for all $1 \leq i \leq d$. Prove that

$$\partial b_{\text{ent}}(x) = \left\{ \left(\log x_i + \lambda \right)_{1 \leq i \leq d} \right\}_{\lambda \in \mathbb{R}}$$

- 2) Let $(u_t)_{t\geq 0}$ be a sequence in \mathbb{R}^d and $((x_t, y_t))_{t\geq 0}$ be UMD iterates associated with h_{ent} and $(u_t)_{t\geq 0}$. Prove that $(x_t)_{t\geq 0}$ is uniquely determined.
- 3) Let $m, n \ge 1$ and let $h : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be defined as

$$b(a, b) = b_{ent}(a) + b_{ent}(b), \quad (a, b) \in \mathbb{R}^m \times \mathbb{R}^n,$$

where h_{ent} denotes both the entropic regularizer on Δ_m and on Δ_n . Prove that *h* is a regularizer on $\Delta_m \times \Delta_n$.

4) Let $G : \Delta_m \times \Delta_n \to \mathbb{R}^m \times \mathbb{R}^n$ be a monotone operator, $\gamma > 0$, and $((x_t, w_t, y_t, z_t))_{t \ge 0}$ a sequence of UMP iterates (see definition in Section 8.3) associated with regularizer *h*, operator G and step-size γ . Prove that $(x_t)_{t \ge 0}$ and $(w_t)_{t \ge 0}$ are uniquely determined. Derive a guarantee (in the case of this regularizer *h*).

- 5) Write the iterates from the last question in the special case of solving a twoplayer zero-sum game, and write the corresponding guarantee. Compare these iterates and guarantee with the optimistic exponential weights algorithm.
- 6) Perform numerical experiments in the context of solving two-player zerosum games to compare the performance of the above algorithms with the (regular) exponential weights algorithm, RM and RM+.

жS