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a finer analysis for convex optimization with step-sizes

Letf ∶ Rd → R a differentiable convex function that admits a global minimizer
x∗ ∈ Rd, (γt)t⩾1 a positive nonincreasing sequence and x1 ∈ Rd. First consider
gradient descent

xt+1 = xt − γt∇f(xt), t ⩾ 1.

1) Prove that for all t ⩾ 1,

0 ⩽ ‖xt − x∗‖
2
2 − ‖xt+1 − x∗‖

2
2 + γ2t ‖∇f(xt)‖

2
2 .

2) For all t ⩾ 1, deduce an upper bound on ‖xt+1 − x∗‖
2
2.

3) For allT ⩾ 1, deduce a more precise1 upper bound on

T
􏾜
t=1

(f(xt) − f(x∗)).
1more precise than the analysis carried in the course for e.g. Mirror Descent with nonin-

creasing step-sizes
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4) Extend the above to a constrained convex optimization setting and to more
general algorithms (e.g. ProjectedGradientDescent,MirrorDescent,UMD).

5) Deduce a finer guarnatee forAdaGrad-Norm in the context of (constrained)
(Lipschitz) convex optimization.

6) Bonus. — Inspired by the above, can you define a variant of AdaGrad-
Norm (possibly with step-sizes being nonincreasing on successive time in-
tervals only) with improved guarantees in the context of Lipschitz convex
optimization?
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