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A FINER ANALYSIS FOR CONVEX OPTIMIZATION WITH STEP-SIZES

Let f : RY — Radifferentiable convex function that admits a global minimizer
x, € R, (Y,):>1 2 positive nonincreasing sequence and x; € R4, First consider
gradient descent

X =%~ Vf(x), t>L

1) Prove that forallz > 1,
2 2 2
0 < llx, — 2.0y = Ixpss — .0 ¥ IV L=
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2) Forallt > 1, deduce an upper bound on |x,,; — x.]|,-

3) Forall T > 1, deduce a more precise1 upper bound on
T

2(flx) = f(x.)).

t=1

"more precise than the analysis carried in the course for e.g. Mirror Descent with nonin-

creasing Step-sizes



4) Extend the above to a congtrained convex optimization setting and to more
general algorithms (e.g. Proje&ed Gradient Descent, Mirror Descent, UMD).

5) Deduce a finer guarnatee for AdaGrad-Norm in the context of (constrained)
(Lipschitz) convex optimization.

6) Bonus. — Inspired by the above, can you define a variant of AdaGrad-
Norm (possibly with step-sizes being nonincreasing on successive time in-
tervals only) with improved guarantees in the context of Lipschitz convex
optimization?



