Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

ĸ

A GENERALIZED APPROACH FOR NONSMOOTH CONVEX OPTIMIZATION

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex function and $\mathscr{X} \subset \mathbb{R}^d$ a nonempty closed convex set, such that there exists $x_* \in \mathscr{X}$ satisfying

$$f(\mathbf{x}_*) = \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}).$$

1) Prove that for all $x, x' \in \mathbb{R}^d$, $y \in \partial f(x)$ and $y' \in \partial f(x')$,

$$\langle y'-y, x'-x\rangle \ge 0.$$

2) Let $(x_t)_{t \ge 1}$ be a sequence in \mathbb{R}^d , $(\beta_t)_{t \ge 1}$ a sequence in [0, 1], $(\gamma_t)_{t \ge 1}$ a positive sequence and for $t \ge 1$, consider

$$\Gamma_t = \sum_{s=1}^t \gamma_s, \quad \bar{x}_t = \frac{\sum_{s=1}^t \gamma_s x_s}{\Gamma_t}, \quad z_t = \beta_t \bar{x}_t + (1 - \beta_t) x_t, \quad \text{and} \quad g_t \in \partial f(z_t).$$

Let $t \ge 1$.

a) Prove that

$$\bar{x}_t - \bar{x}_{t-1} = \frac{\gamma_t}{\Gamma_{t-1}}(x_t - \bar{x}_t)$$
 and $x_t - z_t = \frac{\beta_t}{1 - \beta_t}(z_t - \bar{x}_t).$

b) Prove that

$$\Gamma_t f(\bar{x}_t) - \Gamma_{t-1} f(\bar{x}_{t-1}) - \gamma_t f(x_*) \leq \langle \gamma_t g_t, x_t - x_* \rangle.$$

Indications: make $f(z_t)$ appear, introduce $\tilde{g}_t \in \partial f(\bar{x}_t)$ and use Question 1 with points \bar{x}_t and z_t .

c) Deduce that for $T \ge 1$,

$$\min_{\mathbf{l} \leqslant t \leqslant \mathbf{T}} f(\mathbf{x}_t) - f(\mathbf{x}_*) \leqslant \frac{\sum_{t=1}^{\mathbf{T}} \langle \gamma_t g_t, \mathbf{x}_t - \mathbf{x}_* \rangle}{\Gamma_{\mathbf{T}}}$$

- 3) Let $\|\cdot\|$ be a norm in \mathbb{R}^d and assume that f is L-Lipschitz continuous for $\|\cdot\|$. Using the tools from the course and the previous question, define algorithms for the minimization of f and derive guarantees.
- 4) Extend to *stochastic* nonsmooth convex optimization.
- 5) Perform numerical experiments for e.g. an SVM with a moderate size dataset and compare the performance of various choices for the sequences $(\gamma_t)_{t \ge 1}$ and $(\beta_t)_{t \ge 1}$.