Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

ĸ

GENERALIZED REGULARIZERS

We aim at extending the foundations of UMD theory to weaker assumptions for the regularizer. Let $d \ge 1$ and \mathscr{X} be a nonempty closed convex subset of \mathbb{R}^d .

DÉFINITION. — A function $h : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is a *generalized regularizer* on \mathscr{X} if is convex, lower semicontinuous and if cl dom $h = \mathscr{X}$.

REMARQUE. — Compared to the definition of usual regularizers, strong convexity is not required and dom h^* may be a strict subset of \mathbb{R}^d .

DÉFINITION. — Let *b* be a generalized regularizer on \mathscr{X} and $(u_t)_{t \ge 0}$ a sequence in \mathbb{R}^d . A sequence $((x_t, y_t))_{t \ge 0}$ in $\mathbb{R}^d \times \mathbb{R}^d$ is an associated sequence of UMD associated if for all $t \ge 0$,

- (i) $y_t \in \partial b(x_t)$
- (ii) $x_{t+1} \in \partial b^*(y_t + u_t)$.

These are *strict UMD iterates* if moreover for all $t \ge 0$,

$$\forall x \in \mathcal{X}, \quad \langle y_t + u_t - y_{t+1}, x - x_{t+1} \rangle \leqslant 0.$$

Remarque. — Condition $x_{t+1} \in \partial b^*(y_t + u_t)$ implies in particular that $y_t + u_t \in \operatorname{dom} b^*$.

We also define UMD iterates with respect to time-dependent generalized regularizers.

DÉFINITION. — Let $(b_t)_{t \in \frac{1}{2}\mathbb{N}}$ be a sequence of generalized regularizers on \mathscr{X} and $(u_t)_{t \ge 0}$ a sequence in \mathbb{R}^d . A sequence $((x_t, y_t))_{t \ge 0}$ in $\mathbb{R}^d \times \mathbb{R}^d$ is an associated sequence of UMD iterates if for all $t \in \mathbb{N}$,

- (i) $y_t \in \partial b_t(x_t)$,
- (ii) $x_{t+1} = \partial b_{t+1/2}^* (y_t + u_t).$

How can you extend/adapt the results from Chapter 2 to generalized regularizers?

ĸ