Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

ŝ

OPTIMISTIC ITERATIONS WITH ARBITRARY NORMS FOR SOLVING GAMES

The goal of this project is to extend the guarantee of the optimistic exponential weights algorithm in the context of solving two-player zero-sum games.

Let $m, n \ge 1$ be integers, $A \in \mathbb{R}^{m \times n}$, $\|\cdot\|_{(m)}$ and $\|\cdot\|_{(n)}$ norms on \mathbb{R}^m and \mathbb{R}^n respectively and denote $\|\cdot\|_{(m*)}$ and $\|\cdot\|_{(n*)}$ their respective dual norms, $b^{(m)}$ and $b^{(n)}$ regularizers on Δ_m and Δ_n , $((a_t, b_t, y_t, z_t))_{t\ge 0}$ a sequence in $\mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^n$ and $K^{(m)}$, $K^{(n)}$, $\eta, \eta' > 0$. We assume that

- $((a_t, y_t))_{t \ge 0}$ is a sequence of strict UMD iterates associated with regularizer $b^{(m)}$ and dual increments $(\eta A(2b_t b_{t-1}))_{t \ge 0}$ (with convention $b_{-1} = 0$),
- $((b_t, z_t))_{t \ge 0}$ is a sequence of strict UMD iterates associated with regularizer $b^{(n)}$ and dual increments $(\eta' A^{\top} (2a_t a_{t-1}))_{t \ge 0}$ (with convention $a_{-1} = 0$),
- $b^{(m)}$ is $\mathbf{K}^{(m)}$ -strongly convex for $\|\cdot\|_{(m)}$,
- $h^{(n)}$ is $K^{(n)}$ -strongly convex for $\|\cdot\|_{(n)}$.

QUESTION. — Let $T \ge 0$, $\bar{a}_T = \frac{1}{T+1} \sum_{t=0}^T a_t$ and $\bar{b}_T = \frac{1}{T+1} \sum_{t=0}^T b_t$. Derive a guarantee on $\delta_A(\bar{a}_T, \bar{b}_T)$.

ĸ