Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

жÇ

PARAMETER-FREE APPROACHABILITY ALGORITHMS

Consider the approachability framework from the course and corresponding notation. Let $\mathscr{C} \subset \mathbb{R}^d$ be a closed convex set satisfying Blackwell's condition and $\alpha : \mathscr{C}^\circ \to \mathscr{A}$ an associated oracle such that

 $x' = \lambda x$ for some $\lambda > 0 \implies \alpha(x') = \alpha(x)$.

The goal of this project is to define two families of parameter-free algorithms for approachability and apply them to regret minimization on the simplex, and then study their practical behavior in the context of solving games.

Let $\beta > 0$.

1) Let *h* be a regularizer on \mathscr{C}° such that for all $x \in \mathbb{R}^d$ and $\lambda \ge 0$,

$$b(\lambda x) - \min b = \lambda^{\beta} \left(b(x) - \min b \right)$$

Consider the DA algorithm for approachability associated with regularizer b, constant parameter 1, and oracle α :

$$a_t = lpha \left(
abla b^* \left(\sum_{s=0}^{t-1} r_s \right)
ight), \quad t \ge 0.$$

Let $\mathscr{X}_0 \subset \mathscr{C}^\circ$ be a nonempty closed set. Let $T \ge 0$.

a) Prove that for all $\lambda > 0$,

$$\max_{x \in \lambda \mathcal{X}_0} \left\langle \sum_{t=0}^{\mathrm{T}} r_t, x \right\rangle \leqslant \lambda^{\beta} \left(\max_{\mathcal{X}_0} b - \min b \right) + \sum_{t=0}^{\mathrm{T}} \mathrm{D}_{b^*}(y_t + r_t, y_t)$$

where $y_t = \sum_{s=0}^{t-1} r_s$ for all $t \ge 0$.

b) Deduce that

$$\max_{x \in \mathcal{X}_0} \left\langle \sum_{t=0}^{\mathrm{T}} r_t, x \right\rangle \leq 2 \left(\max_{\mathcal{X}_0} h - \min h \right)^{1/\beta} \left(\sum_{t=0}^{\mathrm{T}} \mathrm{D}_{h^*}(y_t + r_t, y_t) \right)^{1-1/\beta}$$

2) Let H be a mirror map compatible with \mathscr{C}° . We assume that H admits a minimum on \mathbb{R}^d , that the minimizer x_0 belongs to \mathscr{C}° , and that for all $x \in \mathbb{R}^d$ and $\lambda \ge 0$,

$$H(\lambda x) - \min H = \lambda^{\beta} \left(H(x) - \min H \right).$$

Consider the OMD algorithm for approachability associated with regularizer H, constant step-size 1, oracle α , and initial action $a_0 = \alpha(x_0)$:

$$x_{t+1} = \operatorname*{arg\,max}_{x \in \mathscr{C}^{\circ}} \left\{ \langle \nabla H(x_t) + r_t, x \rangle - H(x) \right\} \quad \text{and} \quad a_{t+1} = \alpha \left(x_{t+1} \right), \quad t \ge 0.$$

Prove that for all $T \ge 0$,

$$\max_{x \in \mathcal{X}_0} \left\langle \sum_{t=0}^{\mathrm{T}} r_t, x \right\rangle \leqslant 2 \left(\max_{\mathcal{X}_0} \mathrm{H} - \min \mathrm{H} \right)^{1/\beta} \left(\sum_{t=0}^{\mathrm{T}} \mathrm{D}_{\mathrm{H}^*} (\nabla \mathrm{H}_t(x_t) + r_t, \nabla \mathrm{H}(x_t)) \right)^{1 - 1/\beta}$$

3) Let $1 . Consider algorithms from the above families associated with <math>\ell_p$ regularizer on \mathscr{C}° and ℓ_p mirror map on \mathbb{R}^d respectively:

$$b_p = \frac{1}{2} \| \cdot \|_p^2 + I_{\mathscr{C}^\circ}$$
 and $H_p = \frac{1}{2} \| \cdot \|_p^2$

Using (without proof) the fact that h_p and H_p are (p-1)-strongly convex for $\|\cdot\|_p$, derive corresponding guarantees.

4) Let L > 0. In the context of regret minimization on the simplex, assume that payoff vectors $(u_t)_{t \ge 0}$ are bounded as $||u_t||_{\infty} \le L$ for all $t \ge 0$. Then derive guarantees for the above algorithms corresponding to ℓ_p regularizer and mirror map. Which value of p minimizes the regret bounds thus obtained?

- 5) In the context of regret learning in finite two-player zero sum games, conduct numerical experiments to compare the performance of the above ℓ_p algorithms, the exponential weights algorithm, RM and RM+.
- 6) BONUS. Include in numerical experiments the *optimistic* counterpart of each algorithm.

ĸ