Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

ŝ

CONVEX OPTIMIZATION WITH RELATIVE SMOOTHNESS

Let $d \ge 1$ an integer, $\mathscr{X} \subset \mathbb{R}^d$ a closed convex set, $f : \mathbb{R}^d \to \mathbb{R}$ a convex and differentiable function that admits a minimizer $x_* \in \mathscr{X}$ on \mathscr{X} :

$$f(\mathbf{x}_*) = \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}).$$

Let L > 0 and $h : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ a regularizer such that Lh - f is convex.

1) Prove that for all $x, x' \in \mathbb{R}^d$ and $y \in \partial h(x)$,

$$f(x') \leqslant f(x) + \langle \nabla f(x), x' - x \rangle + \mathrm{LD}_{b}(x', x; y).$$

- 2) Extend Section 6.2 by defining and analyzing UMD-based algorithms in the above context.
- 3) BONUS. Extend Nesterov's acceleration from Section 6.3.

÷ς