Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

жS

ADAGRAD-DIAGONAL: STRONGER ADAPTIVITY TO SMOOTHNESS

Let $d \ge 0$, $f : \mathbb{R}^d \to \mathbb{R}$ a convex function that admits a global minimizer $x_* \in \mathbb{R}^d$, in other words

$$f(x_*) = \min_{x \in \mathbb{R}^d} f(x).$$

Let M be a symmetric positive definite matrix of size d, L > 0 and assume that f is L-smooth for $\|\cdot\|_{M}$.

1) Prove that for all $x \in \mathbb{R}^d$,

$$\frac{1}{2\mathrm{L}}\left\|\nabla f(\mathbf{x})\right\|_{\mathrm{M}^{-1}}^2\leqslant f(\mathbf{x})-f(\mathbf{x}_*).$$

2) Let $\gamma > 0$, $x_0 \in \mathbb{R}^d$ and for $t \ge 0$, define x_{t+1} as

$$x_{t+1,i} = x_{t,i} - rac{\gamma}{\sqrt{\sum_{s=0}^{t} g_{s,i}^2}} g_{t,i}, \qquad 1 \leqslant i \leqslant d, \quad t \geqslant 0,$$

where $g_t = \nabla f(x_t)$, and with convention 0/0 = 0. Assume that M is diagonal. a) Let $T \ge 0$. Prove that

$$\sum_{t=0}^{\mathrm{T}} \left\langle g_{t}, x_{t} - x_{*} \right\rangle \leqslant \left(\frac{\max_{0 \leqslant t \leqslant \mathrm{T}} \left\| x_{t} - x_{*} \right\|_{\infty}^{2}}{2\gamma} + \gamma \right) \sum_{i=1}^{d} \sqrt{\sum_{t=0}^{\mathrm{T}} g_{t,i}^{2}},$$

- b) For the minimization of f, derive a guarantee that is adaptive to the smoothness of f (for $\|\cdot\|_{\mathcal{M}}$).
- 3) BONUS. Prove that $(x_t)_{t \ge 0}$ is bounded.
- 4) BONUS. In a context of stochastic smooth convex optimization, derive a guarantee that is adaptive to both smoothness and noise.

ĸ