Evaluation ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES UNIVERSITÉ PARIS–SACLAY

ĸ

YET ANOTHER ALGORITHM FOR ONLINE STRONGLY CONVEX OPTIMIZATION

Let $\|\cdot\|$ be a norm, $(K_t)_{t\geq 0}$ be a positive sequence and $(\ell_t)_{t\geq 0}$ convex losses on \mathscr{X} such that for all $t \geq 0$, ℓ_t is K_t -strongly convex for $\|\cdot\|$. Let $(\rho_t)_{t\geq 0}$ be a sequence of regularizers on \mathscr{X} . For each $t \geq 0$, let $g_t \in \partial \ell_t(x_t)$ and consider

$$x_{t} = \operatorname*{argmin}_{x \in \mathscr{X}} \left\{ \sum_{s=0}^{t-1} \left(\langle g_{s}, x \rangle + \frac{\mathrm{K}_{s}}{2} \left\| x - x_{s} \right\|^{2} \right) + \rho_{t}(x) \right\}.$$

- 1) Prove that the above can be written as UMD iterates.
- 2) Derive regret bounds on $\sum_{t=0}^{T} (\ell_t(x_t) \ell_t(x))$ (for $x \in \mathcal{X}$). *Hint: One possible approach is to consider:*

$$ilde{\ell}_t(x) = \langle g_t, x \rangle + rac{\mathrm{K}_t}{2} \left\| x - x_t \right\|^2, \quad x \in \mathbb{R}^d, \ t \geqslant 0,$$

and to remark that for all $t \ge 0$ and $x \in \mathcal{X}$,

$$\ell_t(x_t) - \ell_t(x) \leqslant \tilde{\ell}_t(x_t) - \tilde{\ell}_t(x).$$

3) In the case where $\|\cdot\| = \|\cdot\|_2$, derive regret bounds for

$$x_{t} = \operatorname*{argmin}_{x \in \mathscr{X}} \left\{ \sum_{s=0}^{t-1} \left(\langle g_{s}, x \rangle + \frac{\mathrm{K}_{s}}{2} \left\| x - x_{s} \right\|^{2} \right) \right\}, \quad t \geq 0.$$