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•

umd-based extension of adagrad-norm and application to
games

Let d ⩾ 1, 𝒳 ⊂ Rd a nonempty closed convex set,K > 0, ‖ ⋅ ‖ a norm on Rd, h
a regularizer on 𝒳 that isK-strongly convex for ‖ ⋅ ‖.

Let γ > 0. For (ut)t⩾0 a sequence in Rd, let ((xt, yt))t⩾0 be a sequence of
strictUMD iterates associated with regularizer h and dual increments (γtut)t⩾0,
where

γt = γ

√∑t
s=0 ‖us‖

2
∗

, t ⩾ 0,

with convention 0/0 = 0.
1) For x ∈ dom h andT ⩾ 0, derive a guarante on the regret

T
􏾜
t=0

⟨ut, x − xt⟩ .

2) a) In thespecial cases of dual averaging (with a constant regularizer anddual
increments (γtut)t⩾0) and online mirror descent (with a constant mir-
rormap and dual increments (γtut)t⩾0), derive corresponding algorithms
and guarantees.
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b) Write corollaries for dual averaging with Euclidean regularizer and mir-
ror descent with Euclidean mirror map.

c) For the entropic regularizer on the simplex, derive the corresponding al-
gorithm and guarantee.

3) Apply to regret learning for finite two-player zero-sum games and derive
guarantees. Perform numerical experiments to compare the convergence of
the above algorithms (Euclidean DA, Euclidean MD, entropic regularizer)
with RM, RM+ and classical exponential weights.

4) Bonus. —Apply to various optimization problems and derive guarantees.
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