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Foreword

As of 2024, this document contains lecture notes from a course given in
Master 2 in Université Paris–Saclay. These are highly incomplete and con-
stantly updated as the lectures are given.

The course proposes a unified presentation of regret minimization for ad-
versarial online learning problems, and its application to various problems
such as Blackwell’s approachability, optimization algorithms (GD, Nesterov,
SGD, AdaGrad), variational inequalities with monotone operators (Extra-
gradient, Mirror-Prox, Dual Extrapolation), fixed-point iterations (Krasnoselskii–
Mann), and games. The presentation aims at being modular, so that intro-
duced tools and techniques could easily be used to define and analyze new
algorithms.

The central notion of this presentation is the regret, which will be ana-
lyzed using the Legendre–Fenchel transform and Bregman divergences. An
excellent recent monograph on the topic of online learning is the following:

• Francesco Orabona. A modern introduction to online learning. arXiv:1912.13213,
2023.

Additional notable references on the topic include:

• H. Brendan McMahan. A survey of algorithms and analysis for adap-
tive online learning. The Journal of Machine Learning Research, 18(1):3117–
3166, 2017,

• Elad Hazan. Introduction to online convex optimization. Foundations
and Trends® in Optimization, 2(3-4):157–325, 2016,

• Shai Shalev-Shwartz. Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4(2):107–194, 2011,

• Sébastien Bubeck. Introduction to Online Optimization: Lecture Notes.
Princeton University, 2011,

• Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and
Games. Cambridge University Press, 2006.

Regarding convex analysis, we refer to the following classical book:
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• R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press,
1970.
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Chapter 1

Convexity tools

We present the basic convexity notions and tools that will be used in the
subsequent chapters. Most of them are classical and are given without proof.

1.1 Preliminaries
Let d ⩾ 1. Throughout the chapter, we consider Euclidean space Rd

equipped with its canonical inner product denoted 〈 · , · 〉. For a set A ⊂ Rd,
intA and clA denote its interior and closure, respectively.

Definition 1.1.1 (Domain of a function). The domain of a function f :
R → R ∪ {+∞} is the set

dom f =
{
x ∈ Rd, f(x) < +∞

}
.

f is said to be proper if its domain is nonempty.

Definition 1.1.2 (Dual norm). Let ‖ · ‖ be a norm in Rd. Its dual norm is
defined as

‖y‖∗ = max
∥x∥⩽1

〈y, x〉 , y ∈ Rd.

Remark 1.1.3. The above maximum is indeed attained because for a given
y ∈ Rd, function x 7→ 〈y, x〉 is continuous on the closed unit ball, which is
compact. Besides, one can check that the dual norm is indeed a norm.

Proposition 1.1.4. Let ‖ · ‖ be a norm in Rd. Then, ‖ · ‖∗∗ = ‖ · ‖.

Example 1.1.5 (Common dual norms). In Rd, ℓ2 is its own dual norm, ℓp
and ℓq (with p, q ⩾ 1 such that 1/p + 1/q = 1) are dual of each other, and
ℓ1 and ℓ∞ are dual of each other. If A is a positive definite matrix, the dual
norm of the associated Mahalanobis norm x 7→

√
〈x,Ax〉 is the Mahalanobis

norm associated with A−1.
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Convexity 6

Remark 1.1.6. It follows from the definition of the dual norm that for all
x, y ∈ Rd, 〈y, x〉 ⩽ ‖y‖∗ ‖x‖, which, together with the above examples re-
covers Cauchy-Schwarz and Hölder’s inequalities.

For a function f : Rd → R∪{+∞} and x ∈ int dom f , if f is differentiable
in x (resp. twice differentiable), we denote ∇f(x) its gradient at x (resp.
∇2f(x) its Hessian matrix at x).

1.2 Convexity
Definition 1.2.1. A set X ⊂ Rd is convex if for all x, x′ ∈ X and λ ∈ [0, 1],
λx+ (1− λ)x′ ∈ X .

Example 1.2.2 (Unit balls). For all norms, as an immediate consequence
of the triangle inequality, the unit ball is convex.

Example 1.2.3 (Simplex). Denote ∆d the simplex in Rd:

∆d =

{
x ∈ Rd

+,
d∑

i=1

xi = 1

}
,

which is a closed convex set. Note that it is contained in a hyperplane and
therefore has empty interior.

Proposition 1.2.4 (Euclidean projection on a closed convex set). Let X ⊂
Rd be a closed convex set and x ∈ Rd. Then, the Euclidean projection of x
onto X exists an is unique. In other words, x′ 7→ ‖x′ − x‖22 admits a unique
minimizer on X .

Definition 1.2.5 (Convex functions). A function f : Rd → R ∪ {+∞} is
convex if for all x, x′ ∈ Rd and λ ∈ [0, 1],

f(λx+ (1− λ)x′) ⩽ λf(x) + (1− λ)f(x′).

f is strictly convex if the above inequality is strict for λ ∈ (0, 1).

Remark 1.2.6. The convexity of a function f is closely related to the con-
vexity of sets, as the former can be equivalently defined as the epigraph

epi f =
{
(a, x) ∈ Rd × R, a ⩾ f(x)

}
being convex.

Example 1.2.7. The following functions are convex: linear functions, quadratic
functions of the form x 7→ 〈x,Ax〉 where A is a positive semi-definite ma-
trix, the exponential, the negative logarithm, convex combinations of convex
functions, the point-wise supremum of convex functions. Let ‖ · ‖ be a norm
in Rd and a ⩾ 1. Function x 7→ ‖x‖a is convex.
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Proposition 1.2.8 (Jensen’s inequality). Let f : Rd → R ∪ {+∞} be a
convex function, and X a random variable with values in dom f so that
E [X] exists. Then, f is measurable, E [f(X)] exists in R ∪ {+∞} and

f (E [X]) ⩽ E [f(X)] .

In particular, for n ⩾ 1, x1, . . . , xn ∈ Rn and λ1, . . . , λn ⩾ 0 such that
λ1 + · · ·+ λn > 0,

f

(∑n
i=1 λixi∑n
i=1 λi

)
⩽
∑n

i=1 λif(xi)∑n
i=1 λi

.

Proposition 1.2.9 (First and second order characterizations of convexity).
Let f : Rd → R ∪ {+∞} a function with open domain.

(i) If f is differentiable on its domain, f is convex if, and only if, for all
x, x′ ∈ dom f ,

f(x′) ⩾ f(x) +
〈
∇f(x), x′ − x

〉
.

(ii) If f is twice differentiable on its domain, f is convex if, and only if,
for all x ∈ dom f , ∇2f(x) is positive semi-definite.

Proposition 1.2.10. Let X ⊂ Rd be a nonempty convex set, and f : Rd →
R∪{+∞} be a convex function, differentiable on an open set containing X .
Then, x∗ ∈ X is a minimizer of f on X if, and only if,

∀x ∈ X , 〈∇f(x∗), x− x∗〉 ⩾ 0.

Definition 1.2.11 (Lower semicontinuity). A function f : Rd → R∪{+∞}
is lower semicontinuous if for all a ∈ Rd, the set

{
x ∈ Rd, f(x) ⩽ a

}
is

closed.

Example 1.2.12. Let X ⊂ Rd be a convex set. The convex indicator of X
is the convex function defined as

IX (x) =

{
0 if x ∈ X
+∞ otherwise,

which is lower semicontinuous if, and only if X is closed.

Example 1.2.13 (Negative entropy on the simplex). The function hent :
Rd → R ∪ {+∞} defined as

hent(x) =

{∑d
i=1 xi log xi if x ∈ ∆d

+∞ otherwise,

with convention 0 log 0 = 0, is a lower semicontinuous convex function. It
will also be called the entropic regularizer.

Proposition 1.2.14. Let f : Rd → R ∪ {+∞} be a proper lower semicon-
tinuous function and X0 ⊂ Rd a compact set such that dom f ∩ X0 6= ∅.
Then, f attains a minimum on X0.
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1.3 Subgradients
Definition 1.3.1 (Subgradients). Let f : Rd → R ∪ {+∞} and x, y ∈ Rd.
y is a subgradient of f at x if for all x′ ∈ Rd,

f(x′) ⩾ f(x) +
〈
y, x′ − x

〉
.

The set of all subgradients of f at x is called the subdifferential of f at x
and is denoted as ∂f(x).

Example 1.3.2 (Absolute value). For f : x 7→ |x| defined on R, the subd-
ifferential is given by

∂f(x) =


{−1} if x < 0

[0, 1] if x = 0

{1} if x > 0.

Proposition 1.3.3. Let f : Rd → R ∪ {+∞}. A point x∗ ∈ Rd is a global
minimizer of f if, and only if 0 ∈ ∂f(x∗).

Proof. x∗ being a global minimizer can be written

∀x ∈ Rd, f(x) ⩾ f(x∗) + 〈0, x− x∗〉 ,

in other words 0 ∈ ∂f(x∗).

Proposition 1.3.4. Let f : Rd → R ∪ {+∞} be a convex function and
x ∈ int dom f . f is differentiable in x if, and only if, ∂f(x) is a singleton.
When this is the case, ∂f(x) = {∇f(x)}.

Remark 1.3.5. Even in the case of a point in the domain of a convex function,
the subdifferential may be empty. Consider for instance f : R → R∪ {+∞}
defined as:

f(x) =

{
−
√
x if x ⩾ 0

+∞ if x < 0,

which is a proper lower semicontinuous convex function. 0 belongs to the
domain of f and yet, ∂f(0) = ∅.

Proposition 1.3.6 (see e.g. Theorem 23.4 in [Roc70]). Let f : Rd → R ∪
{+∞} be a proper convex function. If x 6∈ dom f(x), then ∂f(x) = ∅ and
if x ∈ int dom f , then ∂f(x) 6= ∅.

Proposition 1.3.7. Let f : Rd → R ∪ {+∞} be a proper convex function,
‖ · ‖ a norm on Rd, and L > 0. Then, f is L-Lipschitz in int dom f with
respect to ‖ · ‖ if, and only if:

∀x ∈ int dom f, ∀y ∈ ∂f(x), ‖y‖∗ ⩽ L.
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1.4 Legendre–Fenchel transform
Definition 1.4.1. Let f : Rd → R ∪ {+∞} be a proper function. The
Legendre–Fenchel transform (or convex conjugate) of f is a function f∗ :
Rd → R ∪ {+∞} defined as

f∗(y) = sup
x∈Rd

{〈y, x〉 − f(x)} , y ∈ Rd.

Remark 1.4.2. In the above definition, for a given y ∈ Rd, because f is
assumed proper, quantity 〈y, x〉 − f(x) is not −∞ for at least some point
x ∈ Rd, and therefore, the supremum is indeed a value in R ∪ {+∞}.
Remark 1.4.3 (Fenchel’s inequality). It follows from the above definition
that for all x, y ∈ Rd, 〈y, x〉 ⩽ f(x) + f∗(y).

The above definition is somewhat abstract, and it may be insightful to
informally examine a simple example in dimension 1 by decomposing the
transformation into simpler steps. Consider f(x) = a

2 (x − b)2 for some
a, b 6= 0, which is a differentiable convex function with finite values on R.
Its derivative is given by f ′(x) = a(x− b), which is (strictly) increasing (as
would be the case as soon as f is differentiable and strictly convex), and is
a bijection from its domain to its range (from R to R in this case). Then,
the inverse (f ′)−1 is also an increasing function: (f ′)−1(y) = y/a + b. We
then consider the following primitive function:

f∗(y) =

∫ y

0
(f ′)−1 −min

x∈R
f(x), y ∈ R,

which can be proved to be an alternative definition of the Legendre–Fenchel
transform in this special case (although the proof is somewhat involved).
As the primitive of an increasing function, f∗ is also convex. Because of
the inverse relation between the derivatives, this transformation f 7→ f∗ is
involutional up a constant: f∗∗ = f + a, (a ∈ R). Then, it can be proved
that a = 0, which can also be noticed graphically. An intuition that appears
in this example is that the more f is curved, the less f∗ is so, and vice-
versa. The derivatives being inverses of each other can be interpreted as
follows: f has slope y at point x if, and only if, f∗ has slope x at point
y. In higher dimension, this builds on the usual duality between points
and hyperplanes. The Legendre–Fenchel transform indeed generalizes the
above to higher dimensions, and for nondifferentiable functions. The neatest
properties of e.g. Propositions 1.4.5 and 1.4.6 below are obtained for the class
of proper lower semicontinuous convex functions. The derivative, which is a
function, is then replaced by the subdifferential, which is a correspondence.

Proposition 1.4.4. If f : Rd → R∪{+∞} is a proper function, f∗ is lower
semicontinuous and convex.
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Theorem 1.4.5 (Fenchel–Moreau). Let f : Rd → R ∪ {+∞} be a proper
function. Then, f is lower semicontinuous and convex if, and only if f =
f∗∗. In this case, f∗ is proper.

Proposition 1.4.6. Let f : Rd → R∪{+∞} be a proper lower semicontinu-
ous convex function and x, y ∈ Rd. The following statements are equivalent:

(i) x ∈ ∂f∗(y),

(ii) y ∈ ∂f(x),

(iii) 〈y, x〉 = f(x) + f∗(y),

(iv) x ∈ Argmaxx′∈Rd {〈y, x′〉 − f(x′)},

(v) y ∈ Argmaxy′∈Rd {〈y′, x〉 − f∗(y′)}.

Example 1.4.7 (Norms and squared norms). Let ‖ · ‖ be a norm in Rd and
denote B its closed unit ball. Then, IB is then a proper lower semicontinuous
convex function and I∗B = ‖ · ‖∗. Therefore, the involutional property of the
Legendre-Fenchel transform is an extension of the involutional property for
dual norms. Besides, if f : x 7→ 1

2 ‖x‖
2, then for y ∈ Rd, f∗(y) = 1

2 ‖y‖
2
∗.

1.5 Bregman divergences
We now define a large class of similarity measures in Rd called Bregman
divergences, which in general are not distances because they may fail to be
symmetric. They contain the squared Euclidean norm and the Kullback–
Leibler divergence as special cases. Bregman divergences are used as an
alternative geometry to the Euclidean one when it comes to e.g. defining
and analyzing iterative algorithms. We present the classical definition which
involves a gradient.

Definition 1.5.1. Let X ⊂ Rd, f : X → R, x ∈ intX and x′ ∈ X such
that f is differentiable in x. Then, the Bregman divergence from x to x′ is
defined as

Df (x
′, x) = f(x′)− f(x)−

〈
∇f(x), x′ − x

〉
.

Remark 1.5.2. Df (x, x
′) is the remainder of the first order Taylor’s expansion

from x to x′, and is a measure of the curvature of f between those two points.
The Bregman divergence is nonnegative as soon as f is convex. In the case
of a linear function f , the Bregman divergence is zero, which corresponds
to the linear function having no curvature.

The above definition which requires the differentiability at starting point
x is the most common. For our purposes however, we also consider the
following generalization (proposed in [JKM23]) which involves a subgradient
instead of a gradient.
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Definition 1.5.3 (Generalized Bregman divergences). Let f : Rd → R ∪
{+∞} be a function, x, x′, y ∈ Rd such that x ∈ dom f and y ∈ ∂f(x). The
Bregman divergence from x to x′ with subgradient y is then defined as

Df (x
′, x; y) = f(x′)− f(x)−

〈
y, x′ − x

〉
.

Remark 1.5.4. The above generalized Bregman divergence may not exist
even when x belongs to the domain of f , as the subdifferential may be
empty. When it exists, because x ∈ dom f , it belongs to R ∪ {+∞} and is
nonnegative when f is convex. When f is convex and differentiable at point
x, the only subgradient at x is ∇f(x) according to Proposition 1.3.4, and
the two previous definitions coincide.
Proposition 1.5.5. Let f : Rd → R∪{+∞} be a proper lower semicontinu-
ous convex function and x, x′, y, y′ ∈ Rd such that y ∈ ∂f(x) and y′ ∈ ∂f(x′).
Then,

Df (x
′, x; y) = Df∗(y, y′; x′).

Proof.

Df (x
′, x; y)−Df∗(y, y′; x′) = f(x′)− f(x)−

〈
y, x′ − x

〉
− f∗(y) + f∗(y′) +

〈
x′, y −′ y

〉
=
〈
x′, y′

〉
− 〈x, y〉 −

〈
y, x′ − x

〉
+
〈
x′, y − y′

〉
= 0,

where for the second equality, we applied Fenchel’s identity from property
(iii) in Proposition 1.4.6.

Example 1.5.6 (Squared Euclidean norm). Consider the squared Euclidean
norm H2 : x 7→ 1

2 ‖x‖
2
2, which is differentiable in Rd. Then for all x, x′ ∈ Rd,

DH2(x
′, x) = 1

2 ‖x
′ − x‖22.

Example 1.5.7 (Squared Mahalanobis norm). Let A be a symmetric pos-
itive definite matrix of size d. Consider the squared Mahalanobis norm
HA : x 7→ 1

2 ‖x‖
2
A, which is differentiable in Rd. Then for all x, x′ ∈ Rd,

DHA
(x′, x) = 1

2 ‖x
′ − x‖2A.

1.6 Strong convexity and smoothness
We now introduce strongly convexity and smoothness which intuitively cor-
respond to the curvature of a function being respectively bounded from
below (by a positive number), and bounded from above in absolute value.
Definition 1.6.1 (Strong convexity). Let f : Rd → R∪{+∞}, ‖ · ‖ a norm
in Rd and K > 0. f is K-strongly convex with respect to ‖ · ‖ if for all
x, x′ ∈ Rd and λ ∈ [0, 1],

f(λx+ (1− λ)x′) ⩽ λf(x) + (1− λ)f(x′)− Kλ(1− λ)

2

∥∥x′ − x
∥∥2 .
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Definition 1.6.2 (Smoothness). Let f : Rd → R be a differentiable func-
tion, ‖ · ‖ a norm in Rd and L > 0. f is L-smooth with respect to ‖ · ‖ if for
all x, x′ ∈ Rd, |Df (x

′, x)| ⩽ L
2 ‖x′ − x‖2, in other words,∣∣f(x′)− f(x)−
〈
∇f(x), x′ − x

〉∣∣ ⩽ L

2

∥∥x′ − x
∥∥2 .

Remark 1.6.3. If f is convex, the above definition reduces to Df (x
′, x) ⩽

L
2 ‖x′ − x‖22 (x, x′ ∈ Rd).

Proposition 1.6.4 (Duality between strong convexity and smoothness).
Let f : Rd → R∪{+∞} be a proper, lower semicontinuous convex function,
‖ · ‖ a norm in Rd and K > 0. The following statements are equivalent.

(i) f is K-strongly convex with respect to ‖ · ‖.

(ii) For all x, x′, y ∈ Rd such that y ∈ ∂f(x), Df (x
′, x; y) ⩾ K

2 ‖x′ − x‖2,
in other words

f(x′) ⩾ f(x) +
〈
y, x′ − x

〉
+

K

2

∥∥x′ − x
∥∥2 .

(iii) For all x, x′, y, y′ ∈ Rd such that y ∈ ∂f(x) and y′ ∈ ∂f(x′),〈
y′ − y, x′ − x

〉
⩾ K

∥∥x′ − x
∥∥2 .

(iv) For all x, x′, y, y′ ∈ Rd such that y ∈ ∂f(x) and y′ ∈ ∂f(x′),〈
y′ − y, x′ − x

〉
⩽ 1

K

∥∥y′ − y
∥∥2
∗ .

(v) For all x, x′, y, y′ ∈ Rd such that y ∈ ∂f(x) and y′ ∈ ∂f(x′), Df (x
′, x; y) ⩽

1
2K ‖y′ − y‖2∗, in other words

f(x′) ⩽ f(x) +
〈
y, x′ − x

〉
+

1

2K

∥∥y′ − y
∥∥2
∗ .

(vi) f∗ is differentiable on Rd and 1/K-smooth with respect to ‖ · ‖∗.

Corollary 1.6.5. Let K > 0, ‖ · ‖ a norm on Rd and f : Rd → R ∪ {+∞}
a proper lower semicontinuous function which we assume K-strongly convex
with respect to ‖ · ‖. Then, for all y, y′ ∈ Rd,

Dh∗(y′, y) ⩽ 1

2K

∥∥y′ − y
∥∥2
∗ .

Proposition 1.6.6 (Second order characterization of strong convexity). Let
f : Rd → R be a twice differentiable function, ‖ · ‖ a norm in Rd and K > 0.
Then, f is K-strongly convex with respect to ‖ · ‖ if, and only if,

∀x ∈ Rd, ∀u ∈ Rd,
〈
u,∇2f(x)u

〉
⩾ K ‖u‖2 .
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Proposition 1.6.7 (First and second order characterizations of smooth-
ness). Let f : Rd → R be a differentiable function, ‖ · ‖ a norm in Rd and
L > 0.

(i) f is L-smooth if, and only if, ∇f is L-Lipschitz with respect to ‖ · ‖.

(ii) Moreover, if f is twice differentiable, f is L-smooth with respect to ‖ · ‖
if, and only if,

∀x ∈ Rd, ∀u ∈ Rd,
∣∣〈u,∇2f(x)u

〉∣∣ ⩽ L ‖u‖2 .

Corollary 1.6.8. The squared Euclidean norm h2 : x 7→ 1
2 ‖x‖

2
2 is 1-strongly

convex and 1-smooth with respect to ‖ · ‖2.

Corollary 1.6.9. Let A be a symmetric positive definite matrix of size d.
The associatd squared Mahalanobis norm x 7→ 1

2 ‖x‖
2
A is 1-strongly convex

and 1-smooth for ‖ · ‖A.

Proposition 1.6.10. For p ∈ (1, 2), the squared ℓp norm hp : x 7→ 1
2 ‖x‖

2
p

is (p− 1)-strongly convex with respect to ℓp.

Proposition 1.6.11. The negative entropy hent is 1-strongly convex with
respect to ℓ1.

Proposition 1.6.12. A proper lower semicontinuous strongly convex func-
tion f : Rd → R ∪ {+∞} admits a unique minimizer on Rd.



Chapter 2

UMD theory

Throughout the chapter, X is a nonempty closed convex set of Rd.

2.1 Introduction
The goal of this chapter is to introduce a general scheme for defining a
sequence of iterates (xt)t⩾0 in X based on another sequence (ut)t⩾0 in Rd,
where for each t ⩾ 0, vector ut is used in the update from xt to xt+1. General
properties are then established. All algorithms and guarantees from the
following chapters will be derived using this general approach, called UMD
for unified mirror descent. To get some taste and intuition, we first examine
a few simple special cases before presenting our general theory.

The simplest update is given by

xt+1 = xt + ut, t ⩾ 0,

and is already of great interest, as it contains as special cases gradient de-
scent (where ut = −γt∇f(xt) is then a step in the opposite direction of the
gradient of some objective function), as well as its stochastic counterpart
(SGD). Such a sequence satisfies the following elementary result.

Proposition 2.1.1. For all t ⩾ 0 and x ∈ Rd,

〈ut, x− xt〉 =
1

2
‖x− xt‖22 −

1

2
‖x− xt+1‖22 +

1

2
‖ut‖22 .

Consequently, for all T ⩾ 0,
T∑
t=0

〈ut, x− xt〉 =
1

2
‖x− x0‖22 −

1

2
‖x− xT+1‖22 +

1

2

T∑
t=0

‖ut‖22 .

Proof. Let t ⩾ 1. Using the definition of xt+1,

‖xt+1 − x‖22 = ‖xt + ut − x‖22 = ‖xt − x‖22 + 2 〈ut, xt − x〉+ ‖ut‖22 ,

and the result follows.

14
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For instance, the classical convergence guarantees about (stochastic) gra-
dient descent in various settings, are consequences of the above identity. The
quantity

∑T
t=0 〈ut, x− xt〉 is called the regret, but the corresponding inter-

pretation will be presented in the next chapter only. Some intuition about
the above can be obtained through a continuous-time counterpart:

if dx̃t
dt

= ũt, then d

dt

(
1

2
‖x− x̃t‖22

)
= 〈ũt, x̃t − x〉 .

Therefore, going back to discrete-time, one can interpret the difference
1

2
‖x− xt‖22 −

1

2
‖x− xt+1‖22

as a discrete-time derivative, and the term 1
2 ‖ut‖

2
2—which does not appear

in continuous-time—as a discretization error.
The quantity 1

2 ‖x− xt‖22 also appears in the following alternative ex-
pression which will inspire generalizations.

Proposition 2.1.2. For t ⩾ 0, xt+1 = xt + ut if, and only if,

xt+1 = argmin
x∈Rd

{
−〈ut, x〉+

1

2
‖x− xt‖22

}
.

The above expression is an incremental point of view, in the sense that
the next iterate xt+1 is written as a function of previous iterate xt and vector
ut only. Another equivalent formulation is the cumulative one:

xt+1 = x0 +

t∑
s=0

us,

where the next iterate xt+1 is only a function of the sum of the previous
vectors us (1 ⩽ s ⩽ t) (plus the initial point x0). These two points of view
will yield different extensions below.

We now turn to a constrained setting were we need the iterates to all
lie in a given nonempty closed convex set X ⊂ Rd. Then, the definition of
the iterates can be adapted by adding a projection step onto X with respect
to the Euclidean distance. The projected gradient descent algorithm is a
special case. Then, the iterates satisfy the following regret bound, where the
comparison point x must lie in X .

Proposition 2.1.3. For t ⩾ 0, xt+1 = argminx∈X ‖xt + ut − x‖22 if, and
only if,

xt+1 = argmin
x∈X

{
−〈ut, x〉+

1

2
‖x− xt‖22

}
.

In that case, for all x ∈ X ,

〈ut, x− xt〉 ⩽
1

2
‖x− xt‖22 −

1

2
‖x− xt+1‖22 +

1

2
‖ut‖22 .
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Another possibility for constraining the iterates in X is the following,
where the vector ut is not added to the current iterate xt as above, but to
the point before the projection onto X .

Proposition 2.1.4. If (xt)t⩾0 and (yt)t⩾0 satisfy

yt+1 = yt + ut and xt+1 = argmin
x∈X

‖yt+1 − x‖22 , t ⩾ 0,

then for all t ⩾ 0,

〈ut, x− xt〉 =
1

2
‖x− xt‖22 −

1

2
‖x− xt+1‖22 +

1

2
‖ut‖22 .

We now go back to the unconstrained case (X = Rd) and consider the
following generalization.

Proposition 2.1.5. For a positive definite matrix A ∈ Rd×d and t ⩾ 0,
xt+1 = xt +A−1ut if, and only if

xt+1 = argmin
x∈Rd

{
−〈ut, x〉+

1

2
‖x− xt‖2A

}
.

In that case, for all x ∈ Rd,

〈ut, x− xt〉 =
1

2
‖x− xt‖2A − 1

2
‖x− xt+1‖2A +

1

2
‖ut‖2A−1 ,

where ‖x‖A =
√

〈x,Ax〉 and ‖y‖A−1 =
√

〈y,A−1y〉.

The last example considers the simplex X = ∆d, and appears at first
sight to be quite different from the above.

Proposition 2.1.6. If for t ⩾ 0,

xt+1 =

(
xt,i exp (ut,i)∑d
j=1 xt,j exp (ut,j)

)
1⩽i⩽d

,

then for all x ∈ ∆d,

〈ut, x− xt〉 = KL(x, xt)−KL(x, xt+t) + log

(
d∑

i=1

xt,i exp (ut,i)− 〈ut, xt〉

)
,

where KL(x′, x) =
∑d

i=1 x
′
i log(x

′
i/xi) denotes the Kullback–Leibler diver-

gence.
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2.2 Regularizers
Definition 2.2.1. A function h : Rd → R∪{+∞} is an pre-regularizer on X
if it is strictly convex, lower semicontinuous, and if cl domh = X . Moreover,
if domh∗ = Rd, then h is said to be an regularizer on X .

Remark 2.2.2. A regularizer is proper (because X is nonempty), convex, and
lower semicontinuous. In particular, Proposition 1.4.6 applies.

The following proposition gives several sufficient conditions for the con-
dition domh∗ = Rd to be satisfied.

Proposition 2.2.3. Let h be an pre-regularizer on X .

(i) If X is compact, then h is a regularizer on X .

(ii) If h is differentiable on Dh := int domh and ∇h(Dh) = Rd, then h is
a regularizer on X .

(iii) If h is strongly convex, then h is a regularizer on X .

Proof. Let y ∈ Rd. For each of the three assumptions, let us prove that
h∗(y) is finite. This will prove that domh∗ = Rd.

(i) Because cl domh = X by definition of a pre-regularizer, we have:

h∗(y) = sup
x∈Rd

{〈y, x〉 − h(x)} = sup
x∈X

{〈y, x〉 − h(x)} .

Besides, the function x 7→ 〈y, x〉 − h(x) is upper semicontinuous and
therefore, according to Proposition 1.2.14, attains a maximum on X
because X is assumed to be compact. Therefore h∗(y) < +∞.

(ii) Because ∇h(Dh) = Rd by assumption, there exists x ∈ Dh such that
∇h(x) = y. Then, by Proposition 1.4.6, h∗(y) = 〈y, x〉 − h(x) < +∞.

(iii) The function x 7→ 〈y, x〉 − h(x) is the opposite of a strongly convex
lower semicontinous function on Rd and therefore admits a maximum
by Proposition 1.6.12. Therefore, h∗(y) < +∞.

Proposition 2.2.4 (Differentiability of h∗). Let h be a regularizer on X .
Then, h∗ is differentiable on Rd, ∇h∗ takes values in domh ⊂ X , and

∇h∗(y) = argmax
x∈Rd

{〈y, x〉 − h(x)} .

Proof. Let y ∈ Rd. Because domh∗ = Rd, the subdifferential ∂h∗(y) is
nonempty by Proposition 1.3.6, ∂h∗(y) is the set of maximizers of func-
tion x 7→ 〈y, x〉 − h(x), which is strictly concave. Therefore, the maximizer
belongs to domh, is unique, and thus h∗ is differentiable at y by Proposi-
tion 1.3.4.
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Proposition 2.2.5 (Euclidean regularizer). The Euclidean regularizer on
X , defined as

h2(x) =
1

2
‖x‖22 + IX (x), x ∈ Rd,

is a regularizer on X and ∇h∗ is the Euclidean projection onto X , in other
words:

∇h∗2(y) = argmin
x∈X

‖y − x‖ .

In particular, in the unconstrained case X = Rd, ∇h∗2(y) = y for all y ∈ Rd.

Proof.

Proposition 2.2.6 (Entropic regularizer). The entropic regularizer

hent(x) =

{∑d
i=1 xi log xi if x ∈ ∆d

+∞ otherwise,

is a regularizer on ∆d and

∇h∗ent(y) =

(
exp (yi)∑d
j=1 exp (yj)

)
1⩽i⩽d

, y ∈ Rd.

Proof.

2.3 UMD iterates
Definition 2.3.1. Let h be a regularizer on X and (ut)t⩾0 a sequence in Rd.
A sequence ((xt, yt))t⩾0 in Rd×Rd is a sequence of UMD iterates associated
with regularizer h and dual increments (ut)t⩾0 if for all t ⩾ 0,

(i) yt ∈ ∂h(xt),

(ii) xt+1 = ∇h∗(yt + ut).

Remark 2.3.2. By Proposition 1.4.6, property (ii) is equivalent to yt + ut ∈
∂h(xt+1).
Remark 2.3.3. For each t ⩾ 0, xt ∈ domh ⊂ X , because otherwise ∂h(xt)
would be empty by Proposition 1.3.6 and could not contain yt.

Definition 2.3.4. Let h be a regularizer on X and (ut)t⩾0 a sequence in
Rd. A sequence ((xt, yt))t⩾0 in Rd ×Rd is a sequence of strict UMD iterates
associated with h and (ut)t⩾0 if for all t ⩾ 0,

(I) yt ∈ ∂h(xt),

(II) ∀x ∈ X , 〈yt + ut − yt+1|x− xt+1〉 ⩽ 0.
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Proposition 2.3.5. Let ((xt, yt))t⩾0 be a sequence of strict UMD iter-
ates defined as above. Then for all t ⩾ 0, xt+1 = ∇h∗(yt + ut) and thus
((xt, yt))t⩾0 are UMD iterates.
Proof. Let t ⩾ 0 and let us equivalently prove that yt + ut ∈ ∂h(xt+1). Let
x ∈ Rd. If x 6∈ domh,

+∞ = h(x)− h(xt+1) ⩾ 〈yt + ut, x− xt+1〉 .

If x ∈ domh, using assumption (II) and the fact that yt+1 ∈ h(xt+1),

h(x)− h(xt+1) ⩾ 〈yt+1, x− xt+1〉 ⩾ 〈yt + ut, x− xt+1〉 .

Therefore, yt + ut ∈ ∂h(xt+1), in other words xt+1 = ∇h∗(yt + ut).

Example 2.3.6 (Euclidean regularizer). Denote ΠX the Euclidean projec-
tion onto X and consider the Euclidean regularizer on X : h = 1

2 ‖ · ‖
2
2 + IX

and x0 ∈ Rd.
• If xt+1 = ΠX (xt + ut) for all t ⩾ 0, then ((xt, xt))t⩾0 can be proved to

be a sequence of strict UMD iterates.

• If yt+1 = yt + ut and xt+1 = ΠX (yt+1) for all t ⩾ 0, then ((xt, yt))t⩾0

can also be proved to be a sequence of strict UMD iterates.
Remark 2.3.7 (Non-unicity of strict UMD iterates). As already seen in the
above example, an interesting character of (strict) UMD iterates is that
for a given sequence (ut)t⩾1 of dual increments and initial points (x0, y0)
such that y0 ∈ ∂h(x0), there may be several possible strict UMD iterates.
Here is a simple and explicit example. Consider d = 1, X = [0, 1], h(x) =
1
2x

2+ IX (x), (x0, y0) = (1, 1) and ut = (−1)t for t ⩾ 0. Then, one can verify
that ((1, 3+(−1)t

2 ))t⩾0 is a strict UMD sequence, and so is ((xt, yt))t⩾0 where
xt = yt =

1+(−1)t+1

2 for t ⩾ 1.
Remark 2.3.8 (Existence of strict UMD iterates). As soon as regularizer h
and sequence of dual increments (u)t⩾0 are given, we can see that associated
strict UMD iterates always exist. Indeed, from the definition of a regularizer,
domh∗ = Rd and thus one can choose any y0 ∈ Rd and consider x0 :=
∇h∗(y0), which satisfies y0 ∈ ∂h(x0). Then, for t ⩾ 0, one can consider
yt+1 := yt + ut which indeed satisfies variational condition (II), and then
define xt+1 := ∇h∗(yt+1), which ensures yt+1 = ∂h(xt+1), as required by (i).
Remark 2.3.9 (Alternative notation for strict UMD iterates). For a given
regularizer h, let Πh : Rd ⇒ X × Rd be a set-valued mapping defined as
follows. For y0 ∈ Rd, Πh(y0) is the set of couples (x, y) satisfying

x = ∇h∗(y0), y ∈ ∂h(x), and ∀x′ ∈ X ,
〈
y0 − y, x′ − x

〉
⩽ 0.

Then, one can verify that ((xt, yt))t⩾0 is a strict UMD sequence associated
with h and given sequence (ut)t⩾0 if, and only if, y0 ∈ ∂h(x0) and

(xt+1, yt+1) ∈ Πh(yt + ut), t ⩾ 0.
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2.4 Regret bounds
Lemma 2.4.1 (UMD lemma). Let h be a regularizer on X , (ut)t⩾0 a se-
quence in Rd, and ((xt, yt))t⩾0 a sequence of UMD iterates associated with
regularizer h and dual increments (ut)t⩾0 and x ∈ domh. Consider notation

Dt = Dh(x, xt; yt), D′
t = Dh(xt+1, xt; yt), D∗

t = Dh∗(yt+ut; yt), t ⩾ 0.

(i) Then for all t ⩾ 1,

〈ut, x− xt+1〉 = Dt −Dt+1 −D′
t + 〈yt + ut − yt+1, x− xt+1〉 ,

and

〈ut, x− xt〉 = Dt −Dt+1 +D∗
t + 〈yt + ut − yt+1, x− xt+1〉 .

(ii) Moreover, ((xt, yt))t⩾0 are strict UMD iterates, then for all t ⩾ 0,

〈ut, x− xt+1〉 ⩽ Dt −Dt+1 −D′
t,

and
〈ut, x− xt〉 ⩽ Dt −Dt+1 +D∗

t .

(iii) Besides, if h is K-strongly convex with respect to some norm ‖ · ‖ and
some K > 0, then for all t ⩾ 0,

D∗
t ⩽ 1

2K
‖ut‖2∗ .

Proof. The first identity from (i) can be verified by writing explicitly the
difference between both sides and simplifying. The second identity follows
from noticing that for all t ⩾ 0,

〈ut, xt+1 − xt〉 = D′
t +Dh(xt, xt+1; yt + ut) = D′

t +D∗
t ,

where the second equality comes from Proposition 1.5.5; and adding to the
first equality. Equalities in (ii) are an immediate consequence of (i). iii
follows from Proposition (1.6.4).

2.5 Time-dependent regularizers
Definition 2.5.1. Let (ht)t∈ 1

2
N be a sequence of regularizers and (ut)t⩾0 a

sequence in Rd. An associated sequence ((xt, yt))t⩾0 in Rd × Rd of UMD
iterates satisfy for all t ∈ N,

(i) yt ∈ ∂ht(xt),
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(ii) xt+1 = ∇h∗t+1/2(yt + ut).

Lemma 2.5.2 (UMD lemma with time-dependent regularizers). Let (ht)t∈ 1
2
N

be a sequence of regularizers, (ut)t⩾0 a sequence in Rd, ((xt, yt))t⩾1 associated
UMD iterates, and x ∈

⋂
t∈ 1

2
N domht. For each t ∈ N, consider notation

• Dt = Dht(x, xt; yt),

• D′
t = ht+1/2(xt+1)− ht(xt)− 〈yt, xt+1 − xt〉,

• D∗
t = h∗t+1/2(yt + ut)− h∗t (yt)− 〈ut, xt〉,

• For x′ ∈ domht (resp. domht+1/2), ∆ht(x
′) = ht+1/2(x

′) − ht(x
′)

(resp. ∆ht+1/2(x
′) = ht+1(x

′)− ht+1/2(x
′)),

• D∆
t+1/2 = ∆ht+1/2(x)−∆ht+1/2(xt+1)− 〈yt+1 − yt − ut, x− xt+1〉.

(i) Then for all t ∈ N,

〈ut, x− xt+1〉 = Dt −Dt+1 −D′
t +D∆

t+1/2 +∆ht(x),

and
〈ut, x− xt〉 = Dt −Dt+1 +D∗

t +D∆
t+1/2 +∆ht(x).

(ii) If ∆ht = 0 for a given t ∈ N, then

〈ut, x− xt+1〉 = Dt −Dt+1 −D′
t +D∆

t+1/2,

and
〈ut, x− xt〉 = Dt −Dt+1 +D∗

t +D∆
t+1/2.

(iii) If ∆ht+1/2 = 0 and 〈yt+1 − yt − ut, x− xt+1〉 ⩾ 0 for a given t ∈ N,
then

〈ut, x− xt+1〉 ⩽ Dt −Dt+1 −D′
t + ht+1(x)− ht(x),

and
〈ut, x− xt〉 ⩽ Dt −Dt+1 +D∗

t + ht+1(x)− ht(x).

(iv) If for a given t ∈ N, ht+1/2 ⩾ ht and ht is Kt-strongly convex with
respect to some norm ‖ · ‖ and some Kt > 0, then

D∗
t ⩽ 1

2Kt
‖ut‖2∗ .
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Proof. The first equality in (i) can be proved by merely simplifying. For the
second inequality, we notice that

〈ut, xt − xt+1〉 = D′
t + ht(xt)− ht+1/2(xt+1)− 〈yt + ut, xt − xt+1〉

= D′
t + 〈yt, xt〉 − h∗t (yt)− 〈yt + ut, xt+1〉+ h∗t+1/2(yt + ut)

− 〈yt + ut, xt − xt+1〉
= D′

t +D∗
t ,

where for the second equality, we used Fenchel’s identity from Proposi-
tion 1.4.6. Adding the above to the first equality give the second equality
in (i). Then, (ii) and (iii) are easy consequences.

Let us prove (iv). The assumption ht+1/2 ⩾ ht and the definition of the
Legendre–Fenchel transform immediately implies h∗t+1/2 ⩽ h∗t . Therefore,

D∗
t = h∗t+1/2(yt + ut)− h∗t (yt)− 〈ut, xt〉 ⩽ Dh∗(yt + ut, yt) ⩽

1

2Kt
‖ut‖2∗ .



Chapter 3

Online linear optimization

This chapter first presents the topic of regret minimization in sequential
decision problems and then makes the connection with online learning and
optimization through the frameworks of online linear optimization and on-
line convex optimization. Several important families of algorithms (dual
averaging, mirror descent, follow the regularized leader) are introduced and
analyzed using UMD theory from Chapter 2.

Throughout the chapter, X is a nonempty closed convex set, and ΠX
denotes the Euclidean projection onto X . For a function f : Rd → R∪{+∞},
we denote Df = int dom f .

3.1 Introduction to regret minimization
Let us first consider a simple sequential decision problem where the Decision
Maker chooses its actions in the finite set {1, . . . , d}, possibly at random.
At step t ⩾ 0,

• the Decision Maker chooses xt ∈ ∆d,

• Nature chooses and reveals payoff vector ut ∈ [0, 1]d,

• it is a random element in {1, . . . , d} drawn according to distribution
xt and revealed to the Decision Maker,

• the Decision Maker obtains payoff ut,it .

The choice of xt by the Decision Maker may depend on all past informa-
tion known to him, meaning (x0, u0, i0, . . . , xt−1, ut−1, it−1). Similarly, the
choice of ut by Nature may depend on all past information including xt:
(x0, u0, i0, . . . , xt−1, ut−1, it−1, xt).

In a restrictive variant of this problem, called multi-armed bandit and
which will be considered later, the decision maker only observes the actually
obtained payoff ut,it , and not the whole payoff vector ut.

23
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The Decision Maker wishes to maximize its cumulative payoff
∑T

t=0 ut,it .
More specifically, we aim at constructing decision rules for the Decision
Maker (which we will simply call algorithms) that offer some worst-case
guarantee on the cumulative payoff which holds for all possible sequence
(ut)t⩾0 chosen by Nature. Therefore, the guarantee must be relative to the
sequence of payoff vectors (ut)t⩾0. One possible type of guarantee is an
upper bound on the regret, defined as

max
1⩽i⩽d

T∑
t=0

ut,i −
T∑
t=0

ut,it ,

which compares the actual cumulative payoff with the best cumulative payoff
that would have been obtained1 by constantly choosing a given element
i ∈ {1, . . . , d}, meaning it = i for all t ⩾ 0.

For a given sequence of payoff vectors (ut)t⩾0, the above regret is a
random variable (because for each t ⩾ 0, it is a random variable), and we are
interested in analyzing its expectation. Using the law of total expectation,
we can write

E

[
max
1⩽i⩽d

T∑
t=0

ut,i −
T∑
t=0

ut,it

]
= E

[
max
1⩽i⩽d

T∑
t=0

ut,i −
T∑
t=0

E [ut,it |xt]

]

= E

[
max
1⩽i⩽d

T∑
t=0

ut,i −
T∑
t=0

〈ut, xt〉

]
.

(3.1)

Besides, because the maximum of linear function on a convex compact set
is attained at its edges,

max
1⩽i⩽d

T∑
t=0

ut,i = max
1⩽i⩽d

〈
T∑
t=0

ut, ei

〉
= max

x∈∆d

T∑
t=0

〈ut, xt〉 .

Therefore, upper bounds on the quantity

max
x∈∆d

T∑
t=0

〈ut, x〉 −
T∑
t=0

〈ut, xt〉 = max
x∈∆d

T∑
t=0

〈ut, x− xt〉 , (3.2)

which we will also call the regret, will yield the same bound on the expected
regret from (3.1).

A common assumption is that the sequence of payoff vectors (ut)t⩾0

is bounded. In that case, we will see that there exists algorithms that
1This interpretation holds only if we assume that the choice of the payoff vectors

(ut)t⩾0 by Nature does not depend on the choices of the Decision Maker. Nevertheless,
all guarantees on the regret will still hold, even in the case where Nature does react to the
choices of the Decision Maker; only the interpretation will not stand.
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guarantee that above (cumulative) regret grows at most in
√
T , in other

words, the average regret is bounded from above by a quantity that vanish
as 1/

√
T . This has the following interpretation called prediction with expect

advice: there are d experts, and at each step t ⩾ 0, the Decision Maker
has to choose one of the experts and follow his advice, and obtains the
corresponding payoff. Then, as will be proved below, there exists algorithms
such that the Decision Maker is guaranteed to perform as well as the best
expert (asymptotically and in average).

Another important question will be the optimal dependence of the regret
bound in d, in the case e.g. where the payoff vectors are assumed to be in
[0, 1]d.

Example 3.1.1 (Follow the leader). The simplest algorithm we may think
of is called follow the leader, and picks the decision i ∈ {1, . . . , d} which
would have yielded the highest cumulative payoff on the previous steps:

it+1 = argmax
1⩽i⩽d

t∑
s=1

us,i, t ⩾ 0,

which can be equivalently written

xt+1 = argmax
x∈∆d

〈
t∑

s=1

us, x

〉
, t ⩾ 0. (3.3)

Unfortunately, this algorithm is too simple and it is easy to find a bounded
sequence for which the regret grows linearly, e.g. for d = 2,

u0 =

(
1/2
0

)
, u1 =

(
0
1

)
, u2 =

(
1
0

)
, u3 =

(
0
1

)
, . . .

yields for all T ⩾ 1,

max
1⩽i⩽d

T∑
t=0

ut,i −
T∑
t=0

ut,it ⩾
T − 1

2
− 1

2
.

Intuitively, the issue with the follow the leader algorithm is that it follows
previous data too closely, so that there exists a payoff vector for the next
step for which the decision of the algorithm is the worst. This is a kind of
overfitting. To address the issue, one possible approach is to regularize the
quantity that is maximized in (4.2), which will lead to the dual averaging
and follow the regularized leader algorithms below.

We now make the connection with online learning and optimization by
presenting two successive extensions of the above framework.
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Online linear optimization The quantity (3.2) inspires the following
natural extension. Let X ⊂ Rd be a nonempty closed convex set, and
U ⊂ Rd any nonempty set. At each step t ⩾ 0,

• the Decision Maker chooses xt ∈ X ,

• Nature chooses and reveals ut ∈ U ,

• the Decision Maker obtains payoff 〈ut, xt〉.

In the case where X is bounded, the natural definition of the regret is

max
x∈X

T∑
t=0

〈ut, x− xt〉 .

When X is unbounded, it will be possible to guarantee upper bounds on
T∑
t=0

〈ut, x− xt〉 ,

that depend on the comparison point x ∈ X . In the case where the set U of
payoff vectors is bounded, typical regret bounds also grow as

√
T , as will be

established below in Sections 3.2 and 3.3.

Online convex optimization We now further generalize by considering
convex loss functions, which is motivated by e.g. online learning. Let X ⊂ Rd

be a nonempty closed convex set and L a nonempty set of convex function
ℓ : Rd → R ∪ {+∞} such that X ⊂ dom ℓ. At each step t ⩾ 0,

• the Decision Maker chooses xt ∈ X ,

• Nature chooses and reveals ℓt ∈ L,

• the Decision Maker incurs loss ℓt(xt).

The corresponding definition for the regret is

max
x∈X

T∑
t=0

(ℓt(xt)− ℓt(x)) .

In the case where the loss functions have some curvature, the latter can
be leveraged to achieve regret bounds that grow strictly slower than

√
T .

The case where the loss function is constant boils down to convex opti-
mization.

Example 3.1.2 (Online linear regression). By slightly modifying the above
problem, the Decision Maker can observe some contextual information zt
before choosing xt ∈ X . Online versions of supervised learning problem can
then be considered with Nature choosing loss function of the form e.g.

ℓ(x) = (〈z, x〉 − y)2, z ∈ Rd, y ∈ R.
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3.2 Dual averaging
We define and analyze the dual averaging family of algorithm which can
be seen as a regularized version of the follow the leader algorithm from
Example (4.2). It is a special case of UMD iterates where for all t ⩾ 0,
the regularizers satisfy ht+1/2 = ht+1 and where the next dual point yt+1 is
uniquely defined as yt+1 = yt + ut.

We obtain in Proposition 3.2.5 below a regret bound in the context of
online linear optimization, which will be applied and transposed to numerous
problems.

Definition 3.2.1. Let (ht)t⩾0 be a sequence of regularizers on X , (ut)t⩾0

a sequence in Rd, and y0 ∈ Rd. The associated sequence (xt)t⩾0 of dual
averaging (DA) iterates is defined for t ⩾ 0 as

xt = ∇h∗t (yt) and yt+1 = yt + ut.

Remark 3.2.2. The above definition can be equivalently written

xt+1 = argmax
x∈Rd

{〈
y0 +

t∑
s=0

ut, x

〉
− ht(x)

}
= argmax

x∈X
{〈ut, x〉 −Dh(x, xt; yt)} .

In the case y0 = 0, the above second expression gives the following inter-
pretation: xt+1 is the maximizer not of the past cumulative payoff function
x 7→

〈∑t
s=0 us, x

〉
as in the follow the leader algorithm (see Section 3.1), but

of a regularized version. For this reason, this algorithm is sometimes called
follow the regularized leader. We will use this name below to designate a
more general algorithm in the context of regret minimization with convex
losses.

Example 3.2.3 (Lazy Mirror Descent). Let y0 ∈ Rd and denote ΠX the
Euclidean projection onto X . For a given sequence (ut)t⩾0, x0 = ΠX (y0)
and

xt+1 = ΠX (xt + ut), t ⩾ 0

corresponds to dual averaging iterates with constant Euclidean regularizer
h = 1

2 ‖ · ‖
2
2 + IX (see Proposition 2.2.5 and Example 2.3.6).

Example 3.2.4 (Exponential weights algorithm). For a given sequence
(ut)t⩾0, consider

xt+1 =

(
exp

(∑t
s=0 us,i

)∑d
j=1 exp

(∑t
s=0 us,j

))
1⩽j⩽d

.

These correspond to dual averaging iterates with constant entropic regular-
izer hent (see Proposition 2.2.6)
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The following statement gives a regret bound for online linear optimiza-
tion, which will also be applied and transposed to numerous problems.

Proposition 3.2.5 (Regret bounds for DA). Let (xt)t⩾0 and (yt)t⩾0 be
defined as in Definition 3.2.1, and x ∈

⋂
t⩾0 domht. Then,

(i) ((xt, yt))t⩾0 is a sequence of UMD iterates associated with regularizers
(ht)t∈ 1

2
N and dual increments (ut)t⩾0, where ht+1/2 := ht+1 for all

t ⩾ 0;

(ii) for all T ⩾ 0,

T∑
t=0

〈ut, x− xt〉 ⩽ D0 + (hT+1(x)− h0(x)) +

T∑
t=0

D∗
t ,

where

D0 = h0(x)− h0(x0)− 〈y0, x− x0〉
D∗

t = h∗t+1(yt + ut)− h∗t (yt)− 〈ut, xt〉 , t ⩾ 0;

(iii) if for t ⩾ 0, ht+1 ⩾ ht and ht is Kt-strongly convex for some norm
‖ · ‖, then D∗

t is bounded as

D∗
t ⩽ 1

2Kt
‖ut‖2∗ .

Proof. (i) holds because the conditions from Definition 2.3.1 are trivially
satisfied. (ii) and (iii) easily follow from Lemma 2.5.2.

Dual averaging with nonincreasing parameter Let h be a regularizer
on X , (ut)t⩾0 a sequence in Rd , y0 = 0 and (ηt)t⩾0 a positive nonincreasing
sequence. Consider iterates (xt)t⩾0 defined for t ⩾ 0 as

xt = ∇h∗(ηtyt) and yt+1 = yt + ut. (3.4)

Then, ((xt, yt))t⩾0 are UMD iterates associated with dual increments (ut)t⩾0

and regularizers (ht)t∈ 1
2
N where

ht(x) =
h(x)−min h

ηt
, t ⩾ 0, (3.5)

and ht+1/2 = ht+1 for t ⩾ 1. The definition of UMD iterates is invariant
when constants are added to regularizers, so it would be equivalent to simply
consider ht = h/ηt but the above regularizers have the advantage of ensuring
ht+1 ⩾ ht and therefore makes the analysis simpler.
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Proposition 3.2.6 (Regret bounds for DA with time-dependent parame-
ters). Consider the iterates defined in (3.4).

(i) For all T ⩾ 0 and x ∈ domh,

T∑
t=0

〈ut, x− xt〉 ⩽
h(x)−min h

ηT
+

T∑
t=0

Dh∗(ηt(yt + ut), ηtyt)

ηt
.

(ii) Moreover, if h is K-strongly convex for some norm ‖ · ‖, for all T ⩾ 0,

T∑
t=0

〈ut, x− xt〉 ⩽
h(x)−min h

ηT
+

1

2K

T∑
t=0

ηt ‖ut‖2∗ .

(iii) Moreover, if there exists L > 0 such that ‖ut‖∗ ⩽ L, then the choice
ηt = η

√
2K/(L

√
t+ 1) for some η > 0 yields

T∑
t=0

〈ut, x− xt〉 ⩽
(
h(x)−min h

η
+ η

)
L

√
T + 1

2K
.

(iv) Moreover, if sup
x∈X

h(x) < +∞, then η =
√
maxX h−min h yields

max
x∈X

T∑
t=0

〈ut, x− xt〉 ⩽ L

√
2(maxX h−min h)(T + 1)

K
.

Proof. (i) Applying Proposition 3.2.5, using y0 = 0, and simplifying gives

T∑
t=0

〈ut, x− xt〉 ⩽
h(x)−min h

ηT+1
+

T∑
t=0

(h∗t+1(yt + ut)− h∗t (yt)− 〈ut, xt〉).

For a given T ⩾ 0, iterates x0, . . . , xT do not depend on ηT+1, therefore,
Proposition 3.2.5 can be applied for ηT+1 = ηT . Besides, because ht+1 ⩾ ht
by definition in (3.5), h∗t+1(yt + ut) ⩽ h∗t (yt + ut), hence the result.

(ii) follows from Proposition 1.6.4, (iii) and (iv) are immediate conse-
quences.

Remark 3.2.7. According to the above statements (iii) and (iv) give that
the average regret is minimized at speed 1/

√
T , for all T ⩾ 0, without

prior knowledge of the latter: the algorithm and the guarantee are said
to be horizon-free. In the case of a bounded domain such that supX h <
+∞, the bound (iv) does not depend on the comparison point x. When
X is unbounded, or when supX h = +∞, the bound (iii) depend on the
comparison point x, but still guarantees a horizon-free average regret bound
of order 1/

√
T , which is an important feature of dual averaging.
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3.3 Online mirror descent
We define and analyze the the online mirror descent family of algorithms,
which is an extension of the online projected gradient descent:

xt+1 = ΠX (xt + ut) = argmax
x∈X

{
〈ut, x〉 −

1

2
‖x− xt‖22

}
,

where the above Euclidean distance is replaced by the Bregman divergence
associated with a differentiable function H. This yields a special case of
UMD iterates where for all t ⩾ 0, ht = ht+1/2 and where dual point yt is
uniquely defined as yt = ∇Ht(xt).

Proposition 3.3.13 below gives a regret bound in the context of online
linear optimization, and will also be applied and transposed to various prob-
lems.

Definition 3.3.1. Let H : Rd → R ∪ {+∞}. Denote DH := int domH. H
is a mirror map compatible with X if

(i) H is lower semi-continuous, strictly convex, and differentiable on DH ,

(ii) the gradient of H takes all possible values, i.e. ∇H(DH) = Rd,

(iii) X ⊂ clDH ,

(iv) X ∩ DH 6= ∅.

Example 3.3.2 (ℓp norms). For p > 1, x 7→ 1
2 ‖x‖

2
p is a mirror map com-

patible with all nonempty closed convex sets.

Example 3.3.3 (Generalized negative entropy). The generalized negative
entropy on the closed positive orthant, defined as

H(x) =

{∑d
i=1 xi log xi if x ∈ Rd

+

+∞ otherwise,

with convention 0 · log 0 = 0, is a mirror map compatible with all nonempty
closed convex subsets of Rd

+ (e.g. the simplex).

Example 3.3.4 (Log barrier). The log barrier on the open positive orthant,
defined as

H(x) =

{
−
∑d

i=1 log xi if x ∈ (R∗
+)

d,

+∞ otherwise,

is a mirror map compatible with all nonempty closed convex subsets of Rd
+

(e.g. the simplex), although its domain is the open positive orthant (R∗
+)

d.

Proposition 3.3.5. Let H be a mirror map compatible with X , H∗ its
Legendre–Fenchel transform. Then,
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(i) domH∗ = Rd,

(ii) H∗ is differentiable on Rd,

(iii) ∇H∗(Rd) = DH ,

(iv) For x ∈ DH and y ∈ Rd, ∇F ∗(∇F (x)) = x and ∇F (∇F ∗(y)) = y.

Proof. Let yt ∈ Rn. By property (ii) from Definition 3.3.1, there exists
x0 ∈ DH such that ∇H(x0) = y. Therefore, function φy : x 7→ 〈y|x〉 −H(x)
is differentiable at x0 and ∇φy(x0) = 0. Moreover, φy is strictly concave
as a consequence of property (i) from Definition 3.3.1. Therefore, x0 is the
unique maximizer of φy and:

H∗(y) = max
x∈Rn

{〈y|x〉 −H(x)} < +∞,

which proves property (i).
Besides, we have

x0 ∈ ∂H∗(y) ⇐⇒ y = ∇H(x0) ⇐⇒ x0 minimizer of ϕy, (3.6)

where the first equivalence comes from Proposition 1.4.6. Point x0 being
the unique maximizer of φy, we have that ∂H∗(y) is a singleton. In other
words, H∗ is differentiable in y and

∇H∗(y) = x0 ∈ DH . (3.7)

First, the above (3.7) proves property (ii). Second, this equality combined
with the equality from (3.6) gives the second identity from property (iv).
Third, this proves that ∇H∗(Rn) ⊂ DH .

It remains to prove the reverse inclusion to get property (iii). Let x ∈
DH . By property (i) from Definition 3.3.1, H is differentiable in x. Consider

y := ∇H(x), (3.8)

and all the above holds with this special point y. In particular, x0 = x by
uniqueness of x0. Therefore (3.7) gives

∇H∗(y) = x, (3.9)

and this proves ∇H∗(Rn) ⊃ DH and thus property (iii). Combining (3.8)
and (3.9) gives the first identity from property (iv).

Proposition 3.3.6 (OMD iteration). Let H be a mirror map compatible
with X , x ∈ DH , u ∈ Rd and consider

x′ = argmax
x′′∈X

{〈
u, x′′

〉
−DH(x′′, x)

}
.
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Then, x′ ∈ X ∩ DH and can also be written

x′ = argmax
x′′∈X

{〈
∇H(x) + u, x′′

〉
−H(x′′)

}
= argmin

x′′∈X
DH(x′′,∇H∗(∇H(x) + u)).

Proof. The proof that x′ is well-defined and belongs to DH is given in
[JKM23]. Besides,

x′ = argmax
x′′∈X

{〈
u, x′′

〉
−DH(x′′, x)

}
= argmax

x′′∈X

{〈
u, x′′

〉
−H(x′′) +

〈
∇H(x), x′′ − x

〉}
= argmax

x′′∈X

{〈
∇H(x) + u, x′′

〉
−H(x′′)

}
= argmax

x′′∈X

{
−H(x′′) +H(∇H∗(∇H(x) + u)) +

〈
∇H(x) + u, x′′ − x

〉}
= argmin

x′′∈X
DH(x′′,∇H∗(∇H(x) + u)).

Definition 3.3.7. A sequence (Ht)t⩾0 of mirror maps has nondecreasing
domains if domHt ⊂ domHt+1 for all t ⩾ 0.

Definition 3.3.8. Let (Ht)t⩾0 be a sequence of mirror maps compatible
with X with nondecreasing domains and (ut)t⩾0 a sequence in Rd. A se-
quence (xt)t⩾0 in Rd is an sequence of online mirror descent (OMD) iterates
on X associated with mirror maps (Ht)t⩾0 and dual increments (ut)t⩾0 if
x0 ∈ X ∩ int domH0 and

xt+1 = argmax
x∈X

{〈ut, x〉 −DHt(x, xt)} , t ⩾ 0.

Remark 3.3.9. The above iterates are well-defined. Indeed, we first note
that x ∈ DH0 , and then by induction, as soon as xt ∈ DHt , Proposition 3.3.6
ensures that xt+1 is well-defined an unique, and that it belongs to DHt .
Because the mirror maps have nondecreasing domains, xt+1 also belongs to
DHt+1 .

Example 3.3.10 (Online (projected) gradient descent). Denote ΠX the
Euclidean projection onto X . Let y0 ∈ Rd and a sequence (ut)t⩾0 in Rd.
Then, x0 = ΠX (y0) and

xt+1 = ΠX (xt + ut), t ⩾ 0,

are OMD iterates on X associated with constant Euclidean mirror map
H = 1

2 ‖ · ‖
2
2.
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Example 3.3.11 (Exponential weights algorithm). The exponential weights
algorithm from Example 3.2.4 gives OMD iterates on the simplex ∆d asso-
ciated with generalized entropic mirror map from Example 3.3.3.

The following proposition indicates the regularizers to consider for mak-
ing the connection with the definition of UMD iterates.

Proposition 3.3.12. Let H be a mirror map compatible with X . Then
h = H + IX is a regularizer on X and for all x ∈ DH , ∇H(x) ∈ ∂h(x).

Proof. See [JKM23].

The following statement gives a regret bound for online linear optimiza-
tion, and will also be applied and transposed to numerous problems.

Proposition 3.3.13 (Regret bounds for OMD). Let (Ht)t⩾0 be a sequence
of mirror maps compatible with X with nondecreasing domains, (ut)t⩾0 a
sequence in Rd, (xt)t⩾0 associated OMD iterates in X and x ∈ X ∩ domH0.
Then,

(i) ((xt,∇Ht(xt)))t⩾0 is a sequence of UMD iterates associated with regu-
larizers (ht)t⩾0 defined as

ht = ht+1/2 = Ht + IX , t ∈ N,

and dual increments (ut)t⩾0;

(ii) for all T ⩾ 0,

T∑
t=0

〈ut, x− xt〉 ⩽ DH0(x, x0)−DHT+1
(x, xT+1) +

T∑
t=0

(D̃∆
t+1/2 + D̃∗

t ),

where

D̃∆
t+1/2 = DHt+1−Ht(x, xt+1),

D̃∗
t = DH∗

t
(∇Ht(xt) + ut,∇Ht(xt));

(iii) if for t ⩾ 0, Ht is Kt-strongly convex for some norm ‖ · ‖, then D̃∗
t is

bounded as
D̃∗

t ⩽ 1

2Kt
‖ut‖2∗ .

Proof. (i) (ht)t∈ 1
2
N are indeed regularizers thanks to Proposition 3.3.12. Let

us prove that ((xt,∇Ht(xt)))t⩾0 satisfy the definition of UMD iterates. Let
t ⩾ 0 and x′ ∈ Rd. By definition of ht, ht ⩾ Ht. Moreover, ht(xt) = H(xt)
because xt ∈ DHt by Remark 3.3.9. Then,

ht(x
′)− ht(xt) ⩾ Ht(x

′)−Ht(xt) ⩾ 〈∇Ft(xt), x− xt〉 ,



Online mirror descent 34

which means ∇Ft(xt) ∈ ∂ht(xt), and the first condition from Definition 2.3.1
is satisfied. Besides, using Proposition 3.3.6 and the definition of ht+1/2,

xt+1 = argmax
x∈X

{〈∇Ht(xt) + ut, x〉 −Ht(x)}

= argmax
x∈Rd

{
〈∇Ht(xt) + ut, x〉 − ht+1/2(x)

}
= ∇h∗t+1/2(∇Ht(xt) + ut),

which proves the second condition, and ((xt,∇Ht(xt)))t⩾0 is indeed a se-
quence of UMD iterates associated with (Ht)t⩾0 and (ut)t⩾0.

(ii) For all t ∈ 1
2N, the definition of ht imply that domht = X ∩ domHt.

Because (Ht)t⩾0 has nondecreasing domains,

x ∈ X ∩ domH0 = X ∩
⋂
t∈N

domHt =
⋂
t∈N

(X ∩ domHt)

=
⋂
t∈N

domht =
⋂

t∈ 1
2
N

domht.

Therefore, Lemma 2.5.2 can be applied with x and with notation therein,
we get for all T ⩾ 0,

T∑
t=0

〈ut, x− xt〉 = D0 −DT+1 +

T∑
t=0

(D∆
t+1/2 +D∗

t ).

First, because x, x0 ∈ X ∩ domH0,

D0 = h0(x)− h0(x0)− 〈∇H0(x0), x− x0〉
= H0(x)−H0(x0)− 〈∇H0(x0), x− x0〉
= DH0(x, x0).

Similarly, x belongs to X ∩domHT+1 and so does xT+1 as a consequence of
(xt)t⩾0 being OMD iterates (see Remark 3.3.9) and DT+1 = DHT+1

(x, xT+1).
Let us now bound the two remaining Bregman divergences. For t ⩾ 0,

denote yt = ∇Ht(xt), then Proposition 3.3.6 ensures that

xt+1 = argmax
x∈X

{〈yt + u, x〉 −Ht(x)} ,

in other words xt+1 is a minimizer of a differentiable convex function over
X . Therefore, Proposition 1.2.10 gives the following variational characteri-
zation: 〈

∇Ht(xt+1)− yt − ut, x
′ − xt+1

〉
⩾ 0, x′ ∈ X .
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We use it for x′ = x to bound D∆
t+1/2 as follows.

D∆
t+1/2 = ∆ht+1/2(x)−∆ht+1/2(xt+1)

− 〈yt+1 − yt − ut, x− xt+1〉
⩽ Ht+1(x)−Ht(x)−Ht+1(xt+1) +Ht(xt+1)

− 〈∇Ht+1(xt+1)−∇Ht(xt+1), x− xt+1〉
= DHt+1−Ht(x, xt+1)

= D̃∆
t+1/2.

We now turn to D∗
t . Because ht ⩾ Ht by definition of ht, the reverse inequal-

ity holds for the Legendre–Fenchel transform, and in particular, h∗t (yt+ut) ⩽
H∗

t (yt + ut). Besides, it holds that

xt = ∇H∗
t (yt) and xt = ∇h∗t (yt),

where the first equality comes from Proposition 3.3.5, whereas the second
is obtained combining the fact that ∇Ht(xt) = yt ∈ ∂ht(xt) (proved above)
with Proposition 1.4.6. The latter proposition also gives a characterization
of both above gradients as maximizers of concave functions, which yields

h∗t (yt) = max
x∈Rd

{〈yt, x〉 − ht(x)} = 〈yt, xt〉 − ht(xt)

= 〈yt, xt〉 −Ht(xt) = max
x∈Rd

{〈yt, x〉 −Ht(x)}

= H∗
t (yt).

Hence

D∗
t = h∗t+1/2(yt + ut)− h∗t (yt)− 〈ut, xt〉 ⩽ H∗

t (yt + ut)−H∗
t (yt)− 〈ut, xt〉

= DH∗
t
(yt + ut, yt).

OMD with nonincreasing step-sizes An important special case of
OMD iterates is the following. Let H be a mirror map compatible with
X , (γt)t⩾0 a positive and nonincreasing sequence, and (ut)t⩾0 a sequence in
Rd. Then, associated OMD iterates on X with time-dependent step-sizes
(or learning rate) are defined as

xt+1 = argmax
x∈X

{〈γtut, x〉 −DH(x, xt)} (3.10)

= argmax
x∈X

{〈∇H(xt) + γtut, x〉 −H(x)} . (3.11)

This corresponds to OMD iterates from Definition 3.3.8 with time-dependent
mirror maps (Ht)t⩾0 defined as Ht = γ−1

t H for all t ⩾ 0, which is indeed a
sequence of mirror maps compatible with X with nondecreasing domains.
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Proposition 3.3.14 (Regret bounds for OMD with time-dependent step–
sizes). Consider the OMD iterates with nonincreasing step-sizes defined in
(3.10).

(i) For all T ⩾ 0 and x ∈ X ∩ domH,

T∑
t=0

〈ut, x− xt〉 ⩽
max
0⩽t⩽T

DH(x, xt)

γT
+

T∑
t=0

D̃∗
t ,

where D̃∗
t = γ−1

t DH∗(∇H(xt) + γtut,∇Ht(xt)).

(ii) Moreover, if H is K-strongly convex with respect to some norm ‖ · ‖,
for all T ⩾ 0,

T∑
t=0

〈ut, x− xt〉 ⩽
max
0⩽t⩽T

DH(x, xt)

γT
+

1

2K

T∑
t=0

γt ‖ut‖2∗ .

(iii) Moreover, if there exists known constants R > 0 and L > 0, such that
for all t ⩾ 0, maxx∈X DH(x, xt) ⩽ R2 and ‖ut‖∗ ⩽ L, then step-sizes
γt = R

√
K/(L

√
t+ 1) yield for all T ⩾ 0,

max
x∈X

T∑
t=0

〈ut, x− xt〉 ⩽ RL

√
2(T + 1)

K
.

Proof. (i) Applying Proposition 3.3.13,

T∑
t=0

〈ut, x− xt〉 =
DH(x, x0)

γ0
− DH(x, xT+1)

γT+1

+
T∑
t=0

(
1

γt+1
− 1

γt

)
DH(x, xt+1) +

T∑
t=0

D̃∗
t

=
DH(x, x0)

γ0
+

T−1∑
t=0

(
1

γt+1
− 1

γt

)
DH(x, xt+1)

− DH(x, xT+1)

γT
+

T∑
t=0

D̃∗
t

⩽
(
max
1⩽t⩽T

DH(x, xt)

)(
1

γ0
+

T−1∑
t=0

(
1

γt+1
− 1

γt

))
+

T∑
t=0

D̃∗
t

=

max
1⩽t⩽T

DH(x, xt)

γT
+

T∑
t=0

D̃∗
t .
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Besides, for all t ⩾ 0 and y ∈ Rd,

H∗
t (y) = max

x∈Rd

{
〈y, x〉 − H(x)

γt

}
=

1

γt
max
x∈Rd

{〈γty, x〉 −H(x)} ,

which yields

D̃∗
t = DH∗

t
(∇Ht(xt) + ut,∇Ht(xt)) =

DH∗(∇H(xt) + γtut,∇H(xt))

γt
.

(ii) and (iii) follow immediately.

Remark 3.3.15. Even for a fixed point x ∈ X∩domH, unless there is a known
bound on maxt⩾0DH(x, xt), for instance in the case where X is bounded,
there is no known sublinear regret bound for OMD. This is contrast with
DA which, with the right nonincreasing parameters from Proposition 3.2.5,
guarantees a regret bound that grows as

√
T with time, as soon as a bound

on the norms of vectors (ut)t⩾0 is known.

Corollary 3.3.16. Consider the special case of online gradient descent it-
erations

xt+1 = ΠX (xt + γtut), t ⩾ 0.

Then, for all T ⩾ 0 and x ∈ X ,

T∑
t=0

〈ut, x− xt〉 ⩽
max
0⩽t⩽T

‖x− xt‖22
2γT

+
T∑
t=0

γt ‖ut‖22
2

.

Proof. Combine Corollaries 3.3.16 and 1.6.8.

3.4 Finite action set
We recall the regret minimization problem where the Decision Maker chooses
at each step an element in {1, . . . , d} possibly at random, described in Sec-
tion 3.1. At step t ⩾ 0,

• the Decision Maker chooses xt ∈ ∆d,

• Nature chooses and reveals payoff vector ut ∈ [0, 1]d,

• it is a random element in {1, . . . , d} drawn according to distribution
xt and revealed to the Decision Maker,

• the Decision Maker obtains payoff ut,it .

As already discussed, the regret minimization in this setting can be reduced
to an online linear optimization on the simplex ∆d, as formalized in the
following lemma.
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Lemma 3.4.1. For all T ⩾ 0,

E

[
max
1⩽i⩽d

T∑
t=0

(ut,i − ut,it)

]
= E

[
max
x∈∆d

T∑
t=0

〈ut, x− xt〉

]
.

Therefore, any upper bound on max
x∈∆d

T∑
t=0

〈ut, x− xt〉 will also be an upper

bound on E

[
max
1⩽i⩽d

T∑
t=0

(ut,i − ut,it)

]
. A common assumption in this setting

is that there is a known bound on the ℓ∞ norm of the payoff vectors. We
establish the important

√
T log d regret bound in this case.

Definition 3.4.2 (Exponential weights algorithm). Let (ut)t⩾0 be a se-
quence in Rd and (ηt)t⩾0 a positive sequence. The associated iterates of
exponential weights algorithm (EW) iterates are defined in the simplex ∆d

as

xt =

 exp
(
ηt
∑t−1

s=0 us,i

)
∑d

j=1 exp
(
ηt
∑t−1

s=0 us,j

)


1⩽i⩽d

, t ⩾ 0.

We recall the definition of the entropic regularizer on the simplex:

hent(x) =

{∑d
i=1 xi log xi if x ∈ ∆d, with convention 0 · log 0 = 0

+∞ otherwise.

Proposition 3.4.3. (i) h∗ent(y) = log

(
d∑

i=1

exp (yi)

)
for all y ∈ Rd.

(ii) ∇h∗ent(y) =

(
exp(yi)∑d

j=1 exp(yj)

)
1⩽i⩽d

for all y ∈ Rd,

(iii) max∆d
hent −min hent = log d,

(iv) hent is 1-strongly convex for ‖ · ‖1.

Proof. (iii) hent being convex, its maximum on ∆d is attained at one of the
extreme points. At each extreme point, the value of hent is zero. Therefore,
max∆d

hent = 0. As for the minimum, hent being convex and symmetric
with respect to the components xi, its minimum is attained at the cen-
troid (1/d, . . . , 1/d) of the simplex ∆d, where its value is − log d. Therefore,
min∆d

hent = − log d, hence the result.
(iv) Consider F : Rd → R ∪ {+∞} defined by

F (x) =

{∑d
i=1 xi(log xi − 1) if x ∈ Rd

+

+∞ otherwise.
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Let us prove that F is 1-strongly convex with respect to ‖ · ‖1. By definition,
the domain of F is Rd

+. It is differentiable on the interior of the domain
(R∗

+)
d and ∇F (x) = (log xi)1⩽i⩽d for x ∈ (R∗

+)
d. Therefore, the norm of

∇F (x) goes to +∞ when x converges to a boundary point of Rd
+. [Roc70,

Theorem 26.1] then assures that the subdifferential ∂F (x) is empty as soon
as x 6∈ (R∗

+)
d. Therefore, condition (iii) from Proposition 1.6.4, which we

aim at proving, can be written〈
∇F (x′)−∇F (x), x′ − x

〉
⩾
∥∥x′ − x

∥∥2
1
, x, x′ ∈ (R∗

+)
d. (3.12)

Let x, x′ ∈ (R∗
+)

d.

〈
∇F (x′)−∇F (x), x′ − x

〉
=

d∑
i=1

log
x′i
xi
(x′i − xi).

A simple study of function shows that (z − 1) log z − 2(z − 1)2/(z + 1) ⩾ 0
for z ⩾ 0. Applied with z = x′i/xi, this gives

d∑
i=1

log
x′i
xi
(x′i − xi) ⩾

∥∥x′ − x
∥∥2
1
,

and (4.3) is proved. F is therefore 1-strongly convex with respect to ‖ · ‖1
and so is hent.

Proposition 3.4.4 (Regret bound for EW). Let (xt)t⩾0 be defined as in
Definition 3.4.2. Then,

(i) (xt)t⩾0 is a sequence of DA iterates associated with regularizer hent,
parameters (ηt)t⩾0 and dual increments (ut)t⩾0.

(ii) Moreover, if (ηt)t⩾0 is nonincreasing, for all T ⩾ 0,

E

[
max
1⩽i⩽d

T∑
t=0

(ut,i − ut,it)

]
⩽ log d

ηT
+

T∑
t=0

Dh∗
ent

(ηt(yt + ut), ηtyt)

ηt
.

(iii) If there exists L > 0 such that ‖ut‖∞ ⩽ L for all t ⩾ 0, and if ηt =√
2 log d/(L

√
t+ 1), then for all T ⩾ 0,

E

[
max
1⩽i⩽d

T∑
t=0

(ut,i − ut,it)

]
⩽ L

√
2(log d)(T + 1).

Proof. (i) follows from Definition 3.4.2 and the expression of ∇h∗ent from
Proposition 3.4.3. (ii) and (iii) are then a simple application of Proposi-
tion 3.2.6 with the properties from Proposition 3.4.3 together with Lemma 3.4.1.

The above
√
T log d bound is known to be essentially unimprovable with-

out further assumptions.
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3.5 Multi-armed bandit
The multi-armed bandit problem is a variant of the regret minimization
with a finite set of decisions where only the actual payoff is revealed to the
Decision Maker. At step t ⩾ 0,

• the Decision Maker chooses xt ∈ ∆d,

• Nature chooses ut ∈ Rd,

• it is drawn in {1, . . . , d} according to xt,

• ut,it is revealed to the Decision Maker.

We aim at obtaining guarantees on

E

[
max
1⩽i⩽d

T∑
t=0

(ut,i − ut,it)

]
.

Since the whole vector ut is unknown to the Decision Maker, one possible
approach is to construct an unbiased estimator of ut as follows

ût =

(
1{i=it}

ut,it
xt,it

)
1⩽i⩽d

, t ⩾ 0, (3.13)

which indeed satisfies E [ût |xt] = ut, and use it as a replacement to ut
in some online linear optimization algorithm on the simplex, e.g. the ex-
ponential weights algorithm. The resulting algorithm is called EXP3 (for
exponential weights for exploration and exploitation) and is proved below
to guarantee a regret bound of order

√
Td log d, in the case where the payoff

vectors are bounded with respect to ‖ · ‖∞.

Lemma 3.5.1. For all T ⩾ 0,

E

[
max
1⩽i⩽d

T∑
t=0

(ut,i − ut,it)

]
⩽ E

[
max
x∈∆d

〈ût, x− xt〉
]
.
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Proof. Using the fact that Emax ⩾ max E,

E

[
max
1⩽i⩽d

T∑
t=1

ût,i −
T∑
t=1

〈ût, xt〉

]
⩾ max

1⩽i⩽d
E

[
T∑
t=1

ût,i

]
− E

[
T∑
t=1

〈ût, xt〉

]

= max
1⩽i⩽d

E

[
T∑
t=1

E [ût,i |xt]

]

− E

[
T∑
t=1

E [〈ût, xt〉 |xt]

]

= max
1⩽i⩽d

E

[
T∑
t=1

ut,i

]
− E

[
T∑
t=1

〈ut, xt〉

]

= max
1⩽i⩽d

E

[
T∑
t=1

ut,i

]
− E

[
T∑
t=1

E [ut,it |xt]

]

= E

[
max
1⩽i⩽d

T∑
t=1

ut,i −
T∑
t=1

ut,it

]
,

here for the last equality, we used the fact that ut,i is deterministic to swap
the maximum and the expectation.

For the analysis for EXP3, we need the following bound which provides
a finer control over the Bregman divergence associated with h∗ent.

Lemma 3.5.2. For y ∈ Rd, u ∈ Rd
−, η > 0 and x = ∇h∗ent(ηy),

Dh∗
ent

(η(y + u), ηy) ⩽ η2

2

d∑
i=1

u2ixi.

Proof. Using the explicit expressions from Proposition 3.4.3

Dh∗
ent

(η(y + u), ηu) = h∗ent(η(y + u))− h∗ent(ηy)− 〈∇h∗ent(ηy)|ηu〉

= log

(
d∑

i=1

eη(yi+ui)

)
− log

(
d∑

i=1

eηyi

)
− η 〈u, x〉

= log

(
d∑

i=1

eηuieηyi∑d
j=1 e

ηyj

)
− η 〈u, x〉

= log

(
d∑

i=1

xie
ηui

)
− η 〈u, x〉 .
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For z ⩽ 0, a simple differentiation proves that ez ⩽ 1 + z + z2

2 . Therefore,

Dh∗
ent

(η(y + u), ηy) ⩽ log

(
d∑

i=1

xi

(
1 + ηui +

η2u2i
2

))
− η 〈u, x〉

= log

(
1 + η 〈u, x〉+ η2

2

d∑
i=1

xiu
2
i

)
− η 〈u, x〉

⩽ η 〈u, x〉+ η2

2

d∑
i=1

xiu
2
i − η 〈u, x〉

=
η2

2

d∑
i=1

xiu
2
i ,

which gives the result.

Proposition 3.5.3 (Regret bound for EXP3). Let L > 0 and (ut)t⩾0 be a
sequence in [−L, 0]d. Let

xt =

(
ηt
∑t−1

s=0 ûs,i∑d
j=1 ηt

∑t−1
s=0 ûs,j

)
1⩽i⩽d

, t ⩾ 0,

where ût is defined as in (3.13) and ηt =
√
2(log d)/(dL2(t+ 1)) . Then,

for all T ⩾ 0,

E

[
max
1⩽i⩽d

T∑
t=0

(ut,i − ut,it)

]
⩽ L

√
2(T + 1)d log d.

Proof. Combine Proposition 3.4.4 with Lemmas 3.5.1 and 3.5.2.

Remark 3.5.4. An important limitation of the above result is that payoff
vectors must belong to [−L, 0]d. Although the regret is invariant when an
additive constant is added to all components of a payoff vector, the con-
struction of the estimator (3.13) however is not invariant by such a trans-
formation. If payoff vectors are given in e.g. [0, L]d, the same regret bound
can be achieved by considering

ût =

(
1{i=it}

ut,it − L

xt,it

)
1⩽i⩽d

, t ⩾ 0,

which are unbiased estimators of ut − L1.
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Online convex optimization

4.1 Introduction
Definition 4.1.1. ℓ : Rd → R ∪ {+∞} is a convex loss function on X if it
is convex, lower semicontinuous, and has nonempty subdifferential on X .

Remark 4.1.2. In particular, X ⊂ dom ℓ according to Proposition 1.3.6.
We consider the online convex optimization problem. At each step t ⩾ 0,

• the Decision Maker chooses xt ∈ X ,

• Nature chooses and reveals a convex loss function ℓt,

• the Decision Maker incurs loss ℓt(xt).

We aim at constructing algorithms which provide guarantees on the corre-
sponding regret, defined as

T∑
t=0

(ℓt(xt)− ℓt(x)) , T ⩾ 0, x ∈ X .

Example 4.1.3. Online linear optimization is a special case of online convex
optimization where for all t ⩾ 0, loss functions are of the form ℓt(x) =
−〈ut, x〉 for some ut ∈ Rd. Then, the above definition of the regret coincide
with the definition from Section 3.

Example 4.1.4. In the online prediction with square loss problem, for all
t ⩾ 0, loss functions are of the form ℓt(x) =

1
2 ‖x− zt‖22 for some zt ∈ Rd.

Example 4.1.5. The online portfolio optimization problem models the se-
quential rebalancing of a portfolio between d assets. At each step t ⩾ 0, the
Decision Maker chooses a distribution xt ∈ ∆d over the assets and changes
the composition of its portfolio accordingly, so that the proportion (in value)
corresponding to asset i ∈ {1, . . . , d} is xt,i. At the end of the step, the value

43
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of each asset i ∈ {1, . . . , d} is multiplied by a factor rt,i ∈ R∗
+ chosen by Na-

ture, which corresponds to its performance. The value of the portfolio is then
multiplied by 〈rt, xt〉. To fit into the online convex optimization framework,
we consider the negative logarithm of the above quantity:

ℓt(x) = − log 〈rt, x〉 , x ∈ ∆d,

so that the cumulative loss of the Decision Maker corresponds to the loga-
rithm of the total variation ratio of the value of its portfolio.

4.2 Loss linearization
Online convex optimization can be reduced to an online linear optimiza-
tion problem. Indeed, for t ⩾ 0, if gt ∈ ∂ℓt(xt), then by definition of a
subgradient,

ℓt(xt)− ℓt(x) ⩽ 〈gt, xt − x〉 , x ∈ X . (4.1)

Therefore, an upper bound on the regret corresponding to the online linear
optimization problem with payoff vectors (−gt)t⩾0 is also an upper bound
on the initial regret corresponding to loss functions (ℓt)t⩾0. The approach of
using an online linear optimization algorithm with (−gt)t⩾0 as payoff vectors
is called loss linearization. The following guarantees are direct adaptations
from Sections 3.2 and 3.3.

Corollary 4.2.1 (Online mirror descent for convex losses). Let K > 0, ‖ · ‖
a norm in Rd, H be a mirror map compatible with X and K-strongly convex
for ‖ · ‖, (γt)t⩾0 a positive and nonincreasing sequence, and x0 ∈ X ∩ DH .
Consider associated OMD iterates:

xt+1 = argmin
x∈X

{〈γtgt, x〉+DH(x, xt)} , t ⩾ 0.

Then for all T ⩾ 0 and x ∈ X ∩ domH,

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
max
0⩽t⩽T

DH(x, xt)

γT
+

1

2K

T∑
t=0

γt ‖gt‖2∗ .

Moreover, if there exists R,L > 0 such that for all t ⩾ 0, maxx∈X DH(x, xt) ⩽
R2 and ℓt is L-Lipschitz for ‖ · ‖, then the choice

γt =
R
√
K

L
√
t+ 1

, t ⩾ 0

guarantee for all T ⩾ 0,

max
x∈X

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽ RL

√
2(T + 1)

K
.
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Corollary 4.2.2 (Dual averaging for convex losses). Let K > 0, ‖ · ‖ a
norm in Rd, h a regularizer on X which we assume K-strongly convex for
‖ · ‖, and (ηt)t⩾0 a positive and nonincreasing sequence. Consider associated
DA iterates:

xt = argmin
x∈X

{〈
ηt

t−1∑
s=0

gs, x

〉
+ h(x)

}
, t ⩾ 0.

(i) Then for all T ⩾ 0 and x ∈ domh,

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
h(x)−min h

ηT
+

1

2K

T∑
t=0

ηt ‖gt‖2∗ .

(ii) Moreover, if there exists L > 0 such that for all t ⩾ 0, ℓt is L-Lipschitz
continuous for ‖ · ‖, then the choice

ηt =
η
√
2K

L
√
t+ 1

, t ⩾ 0,

for some η > 0, guarantee for all T ⩾ 0,

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
(
h(x)−min h

η
+ η

)
L

√
T + 1

2K
.

(iii) Moreover, if supx∈X h(x) < +∞, then η =
√
maxX h−min yields,

max
x∈X

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽ L

√
2(maxX h−min h)(T + 1)

K
.

4.3 Follow the regularized leader
Loss linearization has the advantage of using only a subgradient of each loss
function as the input to the algorithm, and not the whole function. On the
other hand, this approach forgets about the curvature of the loss functions
and convexity inequality (3.6) may be far from tight when the loss functions
do have curvature.

The follow the regularized leader (FTRL) algorithm does not rely on
such a majorization and instead outputs the regularized minimizer of the
past cumulative loss based on the actual loss functions.

Lemma 4.3.1. Let f : Rd → R ∪ {+∞} be a proper lower semicontinuous
convex function and ρ a regularizer on X such that dom f ∩ dom ρ 6= ∅.
Then, f + ρ admits a unique minimizer on X .

Proof.
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Definition 4.3.2 (Follow the regularized leader). Let (ρt)t⩾0 be a sequence
of regularizers on X and (ℓt)t⩾0 a sequence of loss functions on X . Then,
the associated follow the regularized leader (FTRL) iterates are defined as
x0 = argminx∈X ρ0(x) and

xt+1 = argmin
x∈X

{
t∑

s=0

ℓs(x) + ρt+1(x)

}
, t ⩾ 0.

Remark 4.3.3. The above iterates are well-defined thanks to Lemma 4.3.1.
Remark 4.3.4. In the case of linear losses, FTRL reduces to DA from Defi-
nition 3.2.1.

Proposition 4.3.5 (Regret bound for FTRL). Let (xt)t⩾0 be defined as
in Definition 4.3.2 and h0 = ρ0 − min ρ0. For all t ⩾ 0, let gt ∈ ∂ℓt(xt),
yt = −

∑t−1
s=0 gs and

ht+1/2(x) = ht+1(x) =
t∑

s=0

Dℓs(x, xs; gs) + ρt+1(x)−min ρt+1, x ∈ Rd.

Then,

(i) (ht)t∈ 1
2
N is a sequence of regularizers on X ,

(ii) ((xt, yt))t⩾0 is a sequence of UMD iterates associated with regularizers
(ht)t∈ 1

2
N and dual increments (−gt)t⩾0,

(iii) for all T ⩾ 0 and x ∈
⋂

t⩾0 dom ρt,

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽ ρT (x)−min ρT +
T∑
t=0

D∗
t ,

where D∗
t = h∗t+1 (yt+1)− h∗t (yt) + 〈gt, xt〉.

(iv) Let ‖ · ‖ be a norm in Rd, K > 0, ρ a regularizer on X which we
assume K-strongly convex for ‖ · ‖ and (ηt)t⩾0 a positive nonincreasing
sequence. If ρt = η−1

t ρ for all t ⩾ 0, then for all T ⩾ 0,

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
ρ(x)−minX ρ

ηT
+

1

2K

T∑
t=0

ηt ‖gt‖2∗ .

(v) Moreover, if there exists L > 0 such that loss functions (ℓt)t⩾0 are L-
Lipschitz continuous for ‖ · ‖, and if maxX ρT < +∞, then the choice

ηt =
1

L

√
2K (maxX ρ−min ρ)

t+ 1
, t ⩾ 0
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guarantees

max
x∈X

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽ L

√
2 (maxX ρ−min ρ) (T + 1)

K
.

Proof. (i) h0 = ρ0 − min ρ0 is a regularizer on X by assumption. For all
t ⩾ 0, ht+1 is lower semicontinuous as the sum of lower semi-continuous
functions. It is strictly convex, as the sum of a strictly convex function
(regularizer ρt+1) and convex functions. Besides, for all s ⩾ 0, because ℓs
has nonempty subdifferential on X by assumption, its domain contains X .
Therefore,

cl domht+1 = cl

(
dom ρt+1 ∩

⋂
0⩽s⩽t

dom ℓs

)
= cl dom ρt+1 = X .

It remains to prove that domh∗t+1 = Rd. For y ∈ Rd,

h∗t+1(y) = sup
y∈Rd

{〈y, x〉 − ht+1(x)}

= sup
y∈Rd

{
〈y, x〉 −

t∑
s=1

Dℓs(x, xs; gs)− ρt+1(x) + min ρt+1

}
which is a finite quantity because Lemma 4.3.1 applies. Hence, ht+1 is indeed
a regularizer on X .

(ii) For all t ⩾ 0,

xt = argmin
x∈X

{
t−1∑
s=0

ℓs(x) + ρt(x)

}

= argmin
x∈X

{
t−1∑
s=0

(ℓs(xs) + 〈gs, x− xs〉+Dℓs(x, xs; gs)) + ρt(x)

}

= argmin
x∈X

{
t−1∑
s=0

(〈gs, x〉+Dℓs(x, xs; gs)) + ρt(x)

}
= argmin

x∈X
{〈−yt, x〉+ ht(x)}

= argmin
x∈Rd

{〈−yt, x〉+ ht(x)}

= ∇h∗t (yt) ,

where the penultimate equality holds because for all t ⩾ 0, domht ⊂ X .
The above is equivalent to yt ∈ ∂h∗t (xt) by Proposition 1.4.6. Because
ht+1/2 = ht+1, the above also imply for all t ⩾ 0,

xt+1 = ∇h∗t+1/2(yt+1) = ∇h∗t+1/2 (yt − gt) ,
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hence the result.
(iii) Applying Lemma 2.5.2 with notation therein gives for all t ⩾ 0,

〈gt, xt − x〉 ⩽ Dt−Dt+1+D∗
t+(ρt+1(x)−min ρt+1)−(ρt(x)−min ρt)+Dℓt(x, xt; gt).

Reorganizing the terms gives

ℓt(xt)− ℓt(x) = Dt −Dt+1 +D∗
t + (ρt+1(x)−min ρt+1)− (ρt(x)−min ρt).

Summing yields
T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽ D0+

T∑
t=0

D∗
t +(ρT+1(x)−min ρT+1)−(ρ0(x)−min ρ0).

Note that for a given T ⩾ 0, iterates x0, . . . , xT do not depend on ρT+1, and
thus, the above analysis is valid with e.g. ρT+1 = ρT , and we can make the
this substitution in the above right-hand side1. Besides,

D0 = h0(x)− h0(x0)− 〈0, x− x0〉 = ρ0(x)−min ρ0.

Simplifying gives the result.
(iv) Continuing the above analysis (fixing T ⩾ 0 and considering ρT+1 =

ρT , which here corresponds to ηT+1 = ηT ), for all 0 ⩽ t ⩽ T , ht is K/ηt-
strongly convex for ‖ · ‖ as the sum of convex functions and a K/ηt-strongly
convex function (ρt); besides, ht+1 ⩾ ht because parameters (ηt)t⩾0 are
nonincreasing. Then,

ht+1 − ht = Dℓt( · , xt; gt) +

(
1

ηt+1
− 1

ηt

)
ρ ⩾ 0,

which implies h∗t+1 ⩽ h∗t . Therefore,

D∗
t = h∗t+1 (yt − gt)− h∗t (yt) + 〈gt, xt〉
⩽ h∗t (yt − gt)− h∗t (yt) + 〈gt, xt〉

= Dh∗
t
(yt − gt, yt) ⩽

ηt
2K

‖gt‖2∗ ,

where we used Proposition 1.6.4, hence the result. (v) is then an easy
consequence.

Remark 4.3.6. The above last regret bound (v) provide a guarantee similar
to those given in Section 4.2 by OMD and DA with loss linearization, and
thus does not make explicit the advantage of FTRL. However, this bound
corresponds to the case where the losses are assumed Lipschitz continuous
and therefore may very well have no curvature. In the case where losses do
have curvature, above regret bound (iii) may be much smaller, and FTRL
performs in practice much better and OMD and DA.

1This argument remains valid for any choice of ρT+1, but we should keep in mind that
D∗

T depends on ρT+1.
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4.4 Strongly convex losses
We now assume that loss functions have strong convexity and establish below
that this can be leveraged to achieve much smaller regret bounds of order
log T instead of

√
T .

Example 4.4.1 (Square loss). Square loss functions of the form ℓ(x) =
1
2 ‖x− z‖22 for some z ∈ Rd are 1-strongly convex with for ‖ · ‖2 by Corol-
lary 1.6.8.

If the decision maker has access, after having chosen xt, to a subgra-
dient gt ∈ ∂ℓt(xt) and to the strong convexity parameter of loss function
ℓt, it is enough to use online gradient descent with a well-chosen step-size
that depends on the strong convexity parameters to obtain the following
guarantee.

Proposition 4.4.2 (OGD with strongly convex losses). Let (Kt)t⩾0 be a
positive sequence, (ℓt)t⩾0 loss functions such that for all t ⩾ 0, ℓt is Kt-
strongly convex for ‖ · ‖2 and x0 ∈ X . Consider online gradient descent
iterates:

xt+1 = ΠX (xt − γtgt), t ⩾ 0,

where gt ∈ ∂ℓt(xt) and γt =
(∑t

s=0Ks

)−1. Then, for all T ⩾ 0,

max
x∈X

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
1

2

T∑
t=0

‖gt‖22∑t
s=0Ks

.

In particular, if there exists K,L > 0 such that for all t ⩾ 0, Kt = K and
ℓt is L-Lipschitz continuous for ‖ · ‖2, then for all T ⩾ 0,

max
x∈X

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
L2

2K
(1 + log(T + 1)).

Proof. Using the characterization of strong convexity from Proposition 1.6.4,
we write

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
T∑
t=0

(
〈gt, xt − x〉 −

T∑
t=0

Kt

2
‖x− xt‖22

)
.

We then conclude by applying Proposition 3.3.13 and simplifying.

The above result will be used to derive convergence guarantees for SGD
the context of empirical risk minimization with convex losses and Ridge
regularization.

We now turn to the follow the leader (FTL not FTRL) algorithm which
gurantees the same regret bound as OMD, but for any norm ‖ · ‖, with-
out requiring the knowledge of the norm ‖ · ‖ nor of the strong convexity
parameters. This is therefore a much stronger guarantee.
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Proposition 4.4.3 (FTL with strongly convex losses). Let ‖ · ‖ be a norm
in Rd, (Kt)t⩾0 a positive sequence, and (ℓt)t⩾0 loss functions on X such that
for all t ⩾ 0, ℓt is Kt-strongly convex for ‖ · ‖ and x0 ∈ X . Consider

xt+1 = argmin
x∈X

{
t∑

s=0

ℓs(x)

}
, t ⩾ 0. (4.2)

Let h0 = ε ‖x− x0‖22 + IX (x) (for some ε > 0) and for all t ⩾ 0,

ht+1/2(x) = ht+1(x) =

t∑
s=0

Dℓs(x, xs; gs) + IX (x),

where for all s ⩾ 0, gs ∈ ∂ℓs(xs). Then,

(i) (ht) 1
2
N is a sequence of regularizers on X ,

(ii) ((xt,−
∑t−1

s=1 gs))t⩾0 is a sequence of UMD iterates associated with reg-
ularizers (ht)t∈ 1

2
N and dual increments (−gt)t⩾0,

(iii) for all T ⩾ 0,

max
x∈X

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
1

2

T∑
t=0

‖gt‖2∗∑t
s=0Ks

.

Proof. The FTL iterates are well-defined because for t ⩾ 0,
∑t

s=0 ℓs + IX is
a proper lower semicontinuous strongly convex function, and thus admits a
unique minimizer by Proposition 1.6.12.

(i) Let t ∈ 1
2N. ht is lower semicontinuous as the sum of lower semicon-

tinuous functions. It is also strictly convex because it is strongly convex.
For t = 0, domh0 = X as an immediate consequence of the definition and
for t ⩾ 1, because the domain of the convex losses contain X ,

X ⊂ dom

(
t−1∑
s=0

Dℓs( · , xs; gs)

)
,

and therefore

domht = dom

(
t−1∑
s=0

Dℓs( · , xs; gs) + IX

)
= X .

Besides, strong convexity also ensures that domh∗t = Rd by Proposition 2.2.3,
hence the result.

(ii) Similar to the proof of Proposition 4.3.5.
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(iii) For t ⩾ 0, applying Lemma 2.5.2 gives, with notation therein,

〈gt, xt − x〉 ⩽ Dt −Dt+1 +D∗
t +Dℓt(x, xt; yt).

Rearranging gives

ℓt(xt)− ℓt(x) ⩽ Dt −Dt+1 +D∗
t .

Summing gives

T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽ ε ‖x− x0‖22 +
T∑
t=0

D∗
t .

The above being true for all ε > 0, the first term in the above right-hand
side can be removed. It remains to bound D∗

t from above. Let t ⩾ 0. Note
that x 7→ Dℓt(x, xt; gt) is a nonnegative function which attains its minimum,
which is 0, for x = xt. Then, with notation yt = −

∑t−1
s=0 gs we can write

xt = ∇h∗t (yt) = argmin
x∈Rd

{
−〈yt, x〉+

t−1∑
s=0

Dℓs(x, xs; gs)

}

= argmin
x∈Rd

{
−〈yt, x〉+

t∑
s=0

Dℓs(x, xs; gs)

}
= ∇h∗t+1(yt) = ∇h∗t+1/2(yt),

and similarly h∗t (yt) = h∗t+1/2(yt) = h∗t+1(yt). Besides, because ℓt (and
therefore Dℓt( · , xt; gt)) is Kt-strongly convex for ‖ · ‖ by assumption, ht+1 =∑t

s=0Dℓt( · , xt; gt) is
∑t

s=0Ks-strongly convex. Hence,

D∗
t = h∗t+1/2(yt − gt)− h∗t (yt) + 〈gt, xt〉

= h∗t+1(yt − gt)− h∗t+1(yt) +
〈
gt,∇h∗t+1(yt)

〉
= Dh∗

t+1
(yt − gt, yt)

⩽ ‖gt‖2∗
2
∑t

s=0Ks

,

where the inequality holds by Corollary 1.6.5, hence the result.

4.5 Online linear regression
We consider the following online linear regression problem, which does not
exactly fit in the framework of online convex optimization. At each step
t ⩾ 0,

• Nature chooses and reveals wt ∈ Rd,
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• the Decision Maker chooses xt ∈ Rd,

• Nature chooses and reveals zt ∈ R,

• the Decision Maker incurs loss 1
2(〈wt, xt〉 − zt)

2.

The corresponding regret then writes

T∑
t=0

(
1

2
(〈wt, xt〉 − zt)

2 − 1

2
(〈wt, x〉 − zt)

2

)
, T ⩾ 0, x ∈ Rd.

The following algorithm is a variant of FTRL which at step t ⩾ 0 uses
the knowledge of wt to choose xt. Since the loss function at step t ⩾ 0 writes

ℓt(x) =
1

2
〈wt, x〉2 − zt 〈wt, x〉+

1

2
z2t ,

the algorithm chooses xt by minimizing the past cumulatives loss functions
plus the known part of the next loss function ℓt, meaning the first above
term 1

2 〈wt, x〉2, plus a regularization term λ
2 ‖x‖

2
2.

Definition 4.5.1 (Vovk–Azoury–Warmuth algorithm). Let λ > 0, and
((wt, zt))t⩾0 a sequence in Rd × R. The associated Vovk–Azoury–Warmuth
iterates are defined as

xt = argmin
x∈Rd

{
1

2

t−1∑
s=0

(zs − 〈ws, x〉)2 +
1

2
〈wt, x〉2 +

λ

2
‖x‖22

}
, t ⩾ 0.

Lemma 4.5.2 (Lemma 1.11 and Theorem 11.7 in [CBL06]). Let T ⩾ 0,
w0, . . . , wT ∈ Rd and λ > 0. For all 0 ⩽ t ⩽ T , denote St = λI +∑t

s=0wsw
⊤
s . Then,

T∑
t=0

w⊤
t S

−1
t wt ⩽

d∑
i=1

log

(
1 +

λi

λ

)
,

where λ1, . . . , λd are the eigenvalues of ST − λI.

Proposition 4.5.3. Consider the iterates (xt)t⩾0 defined as Definition 4.5.1,
h0(x) =

λ
2 ‖x‖

2
2 and

ht+1/2(x) = ht+1(x) =
1

2
x⊤

(
λI +

t+1∑
s=0

wsw
⊤
s

)
x, t ⩾ 0.

Then,

(i) (ht)t∈ 1
2
N is a sequence of regularizers on Rd,
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(ii) ((xt,
∑t−1

s=0 zsws))t⩾0 is a sequence of UMD iterates associated with
(ht)t∈ 1

2
N and dual increments (ztwt)t⩾0,

(iii) for all T ⩾ 0,
T∑
t=0

(ℓt(xt)− ℓt(x)) ⩽
λ

2
‖x‖22 +

dZ2
T

2
log

(
1 +

W 2
TT

λd

)
.

where
ZT = max

0⩽t⩽T
|zt| and WT = max

0⩽t⩽T
‖wt‖2 .

Proof. (i) For t ⩾ 0, λ
2 I +

∑t
s=0wsw

⊤
s is symmetric positive definite as the

sum of a positive definite matrix (λ2 I) and positive semi-definite matrices. ht
is therefore the corresponding squared Mahalanobis norm, which is indeed
a regularizer on Rd.

(ii) For t ⩾ 0, denote yt =
∑t−1

s=0 zsws. Then,

xt = argmin
x′∈Rd

{
1

2

t−1∑
s=0

(〈
ws, x

′〉− zs
)2

+
1

2
〈wt, x〉2 +

λ

2
‖x‖22

}

= argmin
x′∈Rd

{
1

2

t−1∑
s=0

(〈
ws, x

′〉2 − 2zs
〈
ws, x

′〉+ z2s

)
+

1

2

〈
wt, x

′〉2 + λ

2
‖x‖22

}

= argmin
x′∈Rd

{
−

t−1∑
s=0

〈zsws, x〉+
1

2

t∑
s=0

〈ws, x〉2 +
λ

2
‖x‖22

}
= ∇h∗t (yt),

which can also be written yt ∈ ∂ht(xt). Then, it also holds that

xt+1 = ∇h∗t+1(yt+1) = ∇h∗t+1/2(yt+1) = ∇h∗t+1/2(yt + zt−1wt−1),

hence the result.
(iii) Applying Lemma 2.5.2 gives with notation therein

〈ztwt, x− xt〉 ⩽ Dt −Dt+1 +D∗
t + ht+1(x)− ht(x), t ⩾ 0.

Summing gives
T∑
t=0

〈ztwt, x− xt〉 ⩽ D0 +

T∑
t=0

D∗
t + hT+1(x)− h0(x).

Because iterates x0, . . . , xT do not depend on hT+1, the above analysis can
be carried by hT+1 replaced by hT . Besides, x0 = y0 = 0 by definition,
which implies D0 = h0(x). Therefore,

T∑
t=0

〈ztwt, x− xt〉 ⩽
T∑
t=0

D∗
t +

λ

2
‖x‖22 +

1

2
x⊤

(
T∑
t=0

wtw
⊤
t

)
x. (4.3)
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For each t ⩾ 0, denote St =
λ
2 I+

∑t
s=0wsw

⊤
s and using Fenchel’s inequality

from Remark 1.4.3,

D∗
t = h∗t+1(yt+1)− h∗t (yt)− 〈ztwt, xt〉
= Dh∗

t
(yt+1, yt) + h∗t+1(yt+1)− h∗t (yt+1)

⩽ Dh∗
t
(yt+1, yt) + 〈yt+1, xt+1〉 − ht+1(xt+1)− 〈yt+1, xt+1〉+ ht(xt+1)

=
1

2
(ztwt)

⊤S−1
t (ztwt)− 〈wt+1, xt+1〉2 ,

(4.4)

where we expressed the Bregman divergence of a squared Mahalanobis norm.
Besides, the regret with respect to the actual loss function can be written
as follows:

1

2

(
(〈wt, xt〉 − zt)

2 − (〈wt, x〉 − zt)
2
)

=
1

2
〈wt, xt〉2 −

1

2
〈wt, x〉2 + zt 〈wt, x− xt〉 . (4.5)

Combining (4.3), (4.4) and (4.5) together with Lemma 4.5.2 gives the result.



Chapter 5

Blackwell’s approachability

Blackwell’s approachability is a very general and somewhat abstract frame-
work for sequential decision problems, where the Decision Maker obtains
after each step an outcome vector in e.g. Rd, that depends on its decision
and the decision of Nature through an outcome function. The original ques-
tion was the following: given a subset of Rd called the target, and assuming
that the outcome function is bounded, what are the conditions on the out-
come function and target set such that the Decision Maker has an algorithm
which guarantees that the average outcome vector converges to the target
set? And when such a conditions is satisfied, what algorithm does guar-
antee such a convergence? This framework contains regret minimization,
many variants of regret minimization, and other problems such as asymp-
totic calibration in statistics.

In our presentation, we restrict to target sets that are closed convex
cones, which contain all special cases that are of interest to us, and simplifies
the link with the tools from previous chapters. This link allows in Section 5.4
below the conversion of online linear optimization algorithms into approach-
ability algorithms. Then in Section 5.5, the problem of regret minimization
on the simplex is revisited from an approachability point of view and new al-
gorithms are derived. Among them are the important regret matching (RM)
and regret matching+ (RM+) algorithms which demonstrate excellent per-
formance in practice, in particular in the context of learning in games. In
Section 5.6, several other applications are presented.

We start with a few definitions and properties about closed convex cones.

5.1 Closed convex cones
The proofs are left as exercises.

Definition 5.1.1. A nonempty set C ⊂ Rd is a closed convex cone if it is
closed and if for all x, x′ ∈ C and λ ∈⩾ 0, x+ x′ ∈ C and λx ∈ C.

55
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Proposition 5.1.2. A closed convex cone is convex.

Remark 5.1.3. A closed convex cone C being nonempty, closed and convex,
the Euclidean projection onto C is well-defined and denoted ΠC .

Proposition 5.1.4. For all x ∈ Rd and λ ⩾ 0, ΠC(λx) = λΠC(x).

Definition 5.1.5. Let A ⊂ Rd. The polar cone of A is the set

A◦ =
{
y ∈ Rd, ∀x ∈ A, 〈y, x〉 ⩽ 0

}
.

Proposition 5.1.6. A polar cone is a closed convex cone.

Proposition 5.1.7. If C is a closed convex cone, then C◦◦ = C.

Proposition 5.1.8. The negative orthant Rd
− is a closed convex cone and

its polar cone is the positive orthant Rd
+.

Theorem 5.1.9 (Moreau’s decomposition theorem). Let C ⊂ Rd be a closed
convex cone. For all x ∈ Rd, it holds that:

x = ΠC(x) + ΠC◦(x),

where ΠC and ΠC◦ denote the Euclidean projection onto C and C◦ respec-
tively.

5.2 Framework
Let A,B be two nonempty sets with no particular structure, and g : A×B →
Rd. The elements of A (resp. B) are called the actions of the Decision Maker
(resp. of Nature). g is called the outcome function. At step t ⩾ 0,

• the Decision Maker chooses action at ∈ A,

• Nature chooses action bt ∈ B,

• outcome vector rt := g(at, bt) ∈ Rd is revealed.

We aim at defining algorithms which guarantee some bound on the distance
of the average or cumulative outcome vector to a given closed convex cone
C ⊂ Rd called the target.

With no assumption, it is not possible for the Decision Maker to ensure
the convergence of average outcome vectors to the target set, as the outcome
function may very well output vectors which are far away from the target.
The following assumption corresponds to a favorable case, which in the case
where g is bounded, can be proved to be a characterization of the Decision
Maker having an algorithm ensuring convergence to C.
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Definition 5.2.1. A closed convex cone C satisfies Blackwell’s condition
with respect to outcome function g if there exists α : C◦ → A such that

∀x ∈ C◦, ∀b ∈ B, 〈g(α(x), b), x〉 ⩽ 0.

α is then called an oracle associated with C and g.

Remark 5.2.2. It follows from the above definition that when Blackwell’s
condition is satisfied, there exists an oracle satisfying

x′ = λx for some λ > 0 =⇒ α(x′) = α(x). (5.1)

Remark 5.2.3 (Geometric interpretation of Blackwell’s condition). Black-
well’s condition means that for any given hyperplane containing the target,
the Decision Maker has an action which forces the next outcome vector to
belong the same side of the hyperplane as the target, regardless of Nature’s
action. An equivalent, and more informal interpretation is the following.
Starting from a point y ∈ Rd, the “direction to C” is ΠC(y) − y, which by
Moreau’s decomposition theorem belongs to −C◦. C◦ is in fact the set of all
possible opposite “directions to C”. Blackwell’s condition is then equivalent
to saying that: given a “direction to C”, the Decision Maker can ensure that
the outcome vector will not be in the opposite of that direction (in the sense
of a negative dot product).

In some situations, it is easier to establish the following equivalent dual
condition, which however does not constructively provide an oracle.

Proposition 5.2.4 (Blackwell’s dual condition). Assume that A and B are
convex sets of finite dimensional vector spaces such that A is compact and
outcome function g is bi-affine. Then, a closed convex cone C ⊂ Rd satisfies
Blackwell’s condition with respect to g if, and only if,

∀b ∈ B, ∃a ∈ A, g(a, b) ∈ C.

Proof. Blackwell’s condition can be written

max
x∈C◦

min
a∈A

max
b∈B

〈g(a, b), x〉 ⩽ 0.

Since the above dot product is affine in each of the variables a, b and x, by
applying Sion’s minimax theorem twice, the above is equivalent to

max
b∈B

min
a∈A

max
x∈C◦

〈g(a, b), x〉 ⩽ 0,

which is exactly the dual condition.

Several examples of problems that fit into this framework are presented
in Section 5.6 below.

For the remaining of this chapter, C will be a closed convex cone sat-
isfying Blackwell’s condition with respect to outcome function g and α an
associated oracle satisfying condition (5.1).
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5.3 Blackwell’s algorithm
We consider the framework and notation introduced in the previous sec-
tion. In the case where the given target satisfies Blackwell’s condition and
an associated oracle is known, Blackwell’s original algorithm is defined as
follows.

Definition 5.3.1. The actions given by Blackwell’s algorithm are defined
as

at = α

(
ΠC◦

(
t−1∑
s=0

rs

))
, t ⩾ 0,

where ΠC◦ denotes the Euclidean projection onto C◦.

Remark 5.3.2 (Geometric interpretation of Blackwell’s algorithm). Given
the sum of past outcome vectors Rt−1 :=

∑t−1
s=0 rs, Blackwell’s algorithm

chooses action at that ensures that the next outcome vector rt will not be
in the opposite direction (in the sense of a negative dot product) of Rt−1

to C (which corresponds to ΠC(Rt−1) − Rt−1 = −ΠC◦(Rt−1) by Moreau’s
decomposition theorem).
Remark 5.3.3. An important feature is that Blackwell’s algorithm does not
involve any parameter or step-size to be chosen. It is said to be parameter-
free.

The above statement first gives a general guarantee for Blackwell’s al-
gorithm with no additional assumption. In the case where the outcome
vectors are bounded, the distance of the cumulative outcome to the target
is bounded as

√
T ; consequently, because of the cone structure of the target,

the average outcome vector converges to the target at speed 1/
√
T . This

result is a special case of the general construction and analysis presented in
Section 5.4 below, but we here give an elementary proof.

Proposition 5.3.4 (Guarantees for Blackwell’s algorithm). If C ⊂ Rd is
a closed convex cone satisfying Blackwell’s condition, Blackwell’s algorithm
guarantees for all T ⩾ 0,

min
r∈C

∥∥∥∥∥
T∑
t=0

rt − r

∥∥∥∥∥
2

⩽

√√√√ T∑
t=0

‖rt‖22.

Consequently, if there exists L > 0 such that ‖rt‖2 ⩽ L for all t ⩾ 0,

min
r∈C

∥∥∥∥∥
T∑
t=0

rt − r

∥∥∥∥∥
2

⩽ L
√
T + 1.
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Proof. For all t ⩾ 0, denote Rt =
∑t

s=1 rt (and R−1 = 0) and Πt = ΠC(Rt).

min
r∈C

‖Rt − r‖22 = ‖Rt −Πt‖22 ⩽ ‖Rt −Πt−1‖22 = ‖Rt−1 + rt −Πt−1‖22

= ‖Rt−1 −Πt−1‖22 + 2 〈Rt−1 −Πt−1, rt〉+ ‖rt‖22 .

We bound the above dot product using Moreau’s decomposition theorem as
follows:

〈Rt−1 −Πt−1, rt〉 = 〈Rt−1 −ΠC(Rt−1), rt〉
= 〈ΠC◦(Rt−1), g(α(ΠC◦(Rt−1)), bt)〉 ⩽ 0,

where the last inequality holds by definition of Blackwell’s algorithm and
the equality by definition of oracle α. Therefore,

min
r∈C

‖Rt − r‖2 ⩽ min
r∈C

‖Rt−1 − r‖2 + ‖rt‖22 .

The result follows from summing over t = 0, . . . , T .

5.4 Regret-based approachability algorithms
We present a scheme which converts an online linear optimization algorithm
into an approachability algorithm. In particular, we transpose the guaran-
tees of DA with time-dependent parameters from Section 3.2 and of OMD
with time-dependent step-sizes.

The following statement gives an alternative expression of the distance
to the target, measured by an arbitrary norm.

Proposition 5.4.1. Let ‖ · ‖ be a norm in Rd and B the corresponding
closed unit ball. Then,

max
x∈C◦∩B

〈y, x〉 = min
y′∈C

∥∥y′ − y
∥∥
∗ , y ∈ Rd.

Proof. Let y ∈ Rd. Using the definition of the dual norm and Sion’s minimax
theorem,

inf
y′∈C

∥∥y′ − y
∥∥
∗ = inf

y′∈C
sup
x∈B

〈
y − y′, x

〉
= sup

x∈B
inf
y′∈C

{
〈y, x〉 −

〈
y′, x

〉}
.

Suppose x does not belong to C◦. Then, there exists y′0 ∈ C such that
〈y′0, x〉 > 0. C being closed by multiplication by R+, the quantity 〈y′, x〉
(with y′ ∈ C) can be made arbitrarily large by selecting y′ = λy′0 and letting
λ → +∞, and thus the above infimum is equal to −∞. Therefore, we can
restrict the above supremum to C◦ ∩B. We thus have

inf
y′∈C

∥∥y′ − y
∥∥
∗ = sup

x∈C◦∩B

{
〈y, x〉 − sup

y′∈C

〈
y′, x

〉}
.
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The above embedded supremum is zero because for x ∈ C◦ ∩ B and y′ ∈ C
we obviously have 〈y′, x〉 ⩽ 0, and 0 is attained with y′ = 0. Finally,

inf
y′∈C

∥∥y′ − y
∥∥
∗ = sup

x∈C◦∩B
〈y, x〉 .

The following lemma relates a general class of quantities that can mea-
sure the distance of the sum of outcomes vectors to the target with a quantity
that can be interpreted as an regret in an auxiliary online linear optimization
problem.

Lemma 5.4.2. Let X0 ⊂ Rd a nonempty closed bounded set, (xt)t⩾0 a
sequence in C◦, (bt)t⩾0 a sequence in B, and for all t ⩾ 0, rt = g(α(xt), bt).
Then for all T ⩾ 0,

max
x∈X0

〈
T∑
t=0

rt, x

〉
⩽ max

x∈X0

T∑
t=0

〈rt, x− xt〉 .

Proof. For all t ⩾ 0, because α is an oracle,

〈rt, xt〉 = 〈g(α(xt), bt), xt〉 ⩽ 0.

The result follows.

Our conversion scheme can be summarized as follows.

• Choose closed sets X0 ⊂ X ⊂ C◦, where X is nonempty and convex;

• choose an online linear optimization algorithm on X and

– use it with (rt)t⩾0 as payoff vectors,
– get output (xt)t⩾0 in X ,
– choose actions at = α(xt) (t ⩾ 0) in the initial approachability

problem.

Then, according to Lemma 5.4.2, quantity maxx∈X0

〈∑T
t=0 rt, x

〉
is bounded

from above by the regret bound that is offered by the online linear optimiza-
tion algorithm.

In particular, any UMD iterates with regularizers on X can be converted.
We here focus on two special cases: DA with time-dependent parameters and
OMD with time-dependent step-sizes.

Proposition 5.4.3 (DA for approachability). Let K,L > 0, ‖ · ‖ a norm in
Rd, closed sets X0 ⊂ X ⊂ C◦ where X is convex, and h a regularizer on X
which is K-strongly convex for ‖ · ‖. Assume that
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• for all t ⩾ 0,

at = α

(
∇h∗

(
ηt

t−1∑
s=0

rs

))
where ηt =

√
2K(maxX0 h−min h)

L2(t+ 1)
,

• for all t ⩾ 0, ‖rt‖∗ ⩽ L,

• maxX0 h < +∞.

Then for all T ⩾ 0,

max
x∈X0

〈
T∑
t=0

rt, x

〉
⩽ L

√
2(maxX0 h−min h)(T + 1)

K
.

Proof. Combine Proposition 3.2.6 and Lemma 5.4.2.

Proposition 5.4.4 (Blackwell’s algorithm is a special case of DA). Let
(ηt)t⩾0 be a positive sequence and h2 =

1
2 ‖ · ‖

2
2+IC◦ the Euclidean regularizer

on C◦. Then, Blackwell’s algorithm coincide with dual averaging associated
with regularizer h2 and parameters (ηt)t⩾0.

Proof. For all t ⩾ 0, using Proposition 2.2.5 on the properties of the Eu-
clidean regularizer, the DA algorithm can be rewritten as

at = α

(
∇h∗2

(
ηt

t−1∑
s=0

rs

))
= α

(
ΠC◦

(
ηt

t−1∑
s=0

rt

))

= α

(
ηt ·ΠC◦

(
t−1∑
s=0

rt

))
= α

(
ΠC◦

(
t−1∑
s=0

rt

))
,

where we used Proposition 5.1.4 for the third equality and where the last
inequality holds because oracle α satisfies condition (5.1) by assumption.
This indeed coincides with the definition of Blackwell’s algorithm from Def-
inition 5.3.1.

Remark 5.4.5. Blackwell’s algorithm being parameter-free, the above result
shows that in the special case of the Euclidean regularizer on C◦, the actions
chosen by dual averaging do not depend on the parameters (ηt)t⩾0.

Proposition 5.4.6 (OMD for approachability). Let K,L,R > 0, ‖ · ‖ a
norm in Rd, closed sets X0 ⊂ X ⊂ C◦ where X is convex, H a mirror
map compatible with X which is K-strongly convex for ‖ · ‖, and x0 ∈ X ∩
int domH. Assume that
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• for all t ⩾ 0,

γt =
R
√
K

L
√
t+ 1

xt+1 = argmax
x∈X

{〈∇H(xt) + γtrt, x〉 −H(x)}

at+1 = α(xt+1),

• for all t ⩾ 0, ‖rt‖∗ ⩽ L,

• for all t ⩾ 0, maxx∈X0 DH(x, xt) ⩽ R2.

Then for all T ⩾ 0,

max
x∈X0

〈
T∑
t=0

rt, x

〉
⩽ RL

√
2(T + 1)

K
.

Proof. Combine Proposition 3.3.14 and Lemma 5.4.2.

In the case of the Euclidean mirror map, OMD is called Online Gradient
Descent (OGD). We now consider the corresponding approachability algo-
rithm which we call greedy Blackwell, and which can be considered as the
counterpart in the OMD family of of Blackwell’s algorithm. We establish
below the same guarantee as for Blackwell’s algorithm in Proposition 5.3.4.

Definition 5.4.7. The actions of the greedy Blackwell algorithm are given
by x0 = 0, a0 = α(0) and for t ⩾ 0 by

xt+1 = ΠC◦(xt + rt) and at+1 = α(xt+1).

Proposition 5.4.8 (Greedy Blackwell is OGD for approachability). Let
γ > 0. The greedy Blackwell algorithm coincide with OGD on C◦ with initial
point x0 = 0 and constant step-size γ.

Proof. Denote (xt)t⩾0 the sequence defined as in Definition 5.4.7 and (x′t)t⩾0

the sequence from Proposition 5.4.6 associated with Euclidean mirror map
H2 =

1
2 ‖ · ‖

2
2 and X = C◦. Let us prove that x′t = γxt for all t ⩾ 0. It is true

for t = 0, as x′0 = x0 = 0. Then, by induction, for t ⩾ 1,

x′t+1 = ΠC◦(x′t + γrt) = ΠC◦(γxt + γrt) = γ ·ΠC◦(xt + rt) = γxt+1,

where we used Proposition 5.1.4 for the penultimate equality. The result
follows from property (5.1).

Remark 5.4.9. Like Blackwell’s algorithm, the greedy Blackwell algorithm
is parameter-free.
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Proposition 5.4.10. The greedy Blackwell algorithm guarantees for all T ⩾
0,

min
r∈C

∥∥∥∥∥
T∑
t=0

rt − r

∥∥∥∥∥
2

⩽

√√√√ T∑
t=0

‖rt‖22.

Proof. According to Proposition 5.4.8, the greedy Blackwell algorithm cor-
responds to OGD on C◦ with x0 = 0 and any step-size γ > 0. Then the
DA regret bound from Proposition 3.2.5 (applied with constant mirror map
H = H2/γ) gives, for all x ∈ C◦ and T ⩾ 0, with notation therein,

T∑
t=0

〈rt, x− xt〉 ⩽ D0 +

T∑
t=0

D̃∗
t ,

where

D0 =
1

2γ
‖x‖22 and D̃∗

t = DH∗(∇H(xt) + rt,∇H(xt)) =
‖rt‖22
2γ

,

because the Bregman divergence corresponds to the Euclidean distance in
the case of the Euclidean mirror map and because H∗ = 1

2γ ‖ · ‖22 as seen
in Example 1.4.7. The above is true for all γ > 0. In particular, γ =(∑T

t=0 ‖rt‖
2
2

)−1
yields

T∑
t=0

〈rt, x− xt〉 ⩽
1

2

(
‖x‖22 + 1

)√√√√ T∑
t=0

‖rt‖22.

Using Lemma 5.4.2 and Proposition 5.4.1 (applied with X0 = C◦∩B2 where
B2 is the closed Euclidean unit ball) then gives the result.

5.5 Approachability-based regret minimization on
the simplex

In this section, we consider the online linear optimization problem on the
simplex and rewrite it as an approachability problem. This approach yields
new algorithms. In particular, the Blackwell and greedy Blackwell algo-
rithms give in this case the so-called regret matching (RM) and regret
matching+ (RM+) algorithms respectively.

In this section, (at)t⩾0 denote the actions of the Decision Maker in the
simplex ∆d and should not be confused with (xt)t⩾0 which can be interpreted
as the output of auxiliary online linear optimization algorithms, which be-
long to R∗

+, but not necessarily to ∆d.
Denote 1 = (1, . . . , 1) ∈ Rd.
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Proposition 5.5.1 (Hart–Mas-Colell reduction). Consider the framework
and notation from Section 5.2 with action sets A = ∆d, B = Rd, and
outcome function g : (a, u) 7→ u− 〈u, a〉1.

(i) R+
− satisfies Blackwell’s condition with respect to g, with

α(x) =

{
x/ ‖x‖1 if x 6= 0

a0 if x = 0,
x ∈ Rd

+,

where a0 ∈ ∆d, being an associated oracle.

(ii) Let (xt)t⩾0 and (ut)t⩾0 sequences in X and Rd respectively, let at =
α(xt) and rt = g(at, ut) for all t ⩾ 0. Then, for all T ⩾ 0,

max
x∈∆d

T∑
t=0

〈ut, x− at〉 = max
x∈∆d

〈
T∑
t=0

rt, x

〉
.

Proof. (i) Let x ∈ (Rd
−)

◦ = Rd
+. If x = 0, the dot product from Blackwell’s

condition is zero for any value of α(x). If x 6= 0, because 〈1, x〉 = ‖x‖1, for
all u ∈ Rd,

〈g (α(x), u) , x〉 =
〈
g

(
x

‖x‖1
, u

)
, x

〉
=

〈
u−

〈
u,

x

‖x‖1

〉
1, x

〉
= 〈u, x〉 −

〈
u,

x

‖x‖1

〉
〈1, x〉 = 〈u, x〉 − 〈u, x〉 = 0.

(ii) For all x ∈ ∆d,〈
T∑
t=0

rt, x

〉
=

〈
T∑
t=0

g(ut, at), x

〉
=

T∑
t=0

〈ut − 〈ut, at〉1, x〉

=
T∑
t=0

(〈ut, x〉 − 〈ut, at〉 〈1, x〉) =
T∑
t=0

〈ut, x− at〉 .

In the approachability problem described in Proposition 5.5.1, we now
examine the Blackwell’s algorithm and the greedy Blackwell algorithm. They
are first defined below with their simplest expressions and then related to
Definitions 5.3.1 and 5.4.7.

For y ∈ Rd, denote y+ the corresponding vector obtained by taking the
positive part in each component, in other words,

y+ =
(
max(yi, 0)

)
1⩽i⩽d

.
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Definition 5.5.2. Let (ut)t⩾0 be a sequence in Rd and a0 ∈ ∆d.

• The regret matching (RM) algorithm gives for all t ⩾ 0,

at =


yt,+

‖yt,+‖1
if yt,+ :=

(
t−1∑
s=0

(us − 〈us, as〉1)

)
+

6= 0

a0 otherwise.
, t ⩾ 0.

• The regret matching+ (RM+) algorithm is defined as x0 = 0 and for
all t ⩾ 0,

at =


xt

‖xt‖1
if xt 6= 0

a0 otherwise,
xt+1 = (xt + ut − 〈ut, at〉1)+ .

Proposition 5.5.3. (i) RM (resp. RM+) corresponds to Blackwell’s al-
gorithm (resp. the greedy Blackwell algorithm) in the approachability
problem and oracle described in Proposition 5.5.1.

(ii) Against a sequence of payoff vectors (ut)t⩾0 in Rd, with notation from
Definition 5.5.2, both RM and RM+ guarantee for all T ⩾ 0,

max
x∈∆d

T∑
t=0

〈ut, x− at〉 ⩽

√√√√ T∑
t=0

‖ut − 〈ut, at〉1‖22.

(iii) Moreover, if there exists L > 0 such that ‖ut‖∞ ⩽ L for all t ⩾ 0, both
RM and RM+ guarantee for all T ⩾ 0,

max
x∈∆d

T∑
t=0

〈ut, x− at〉 ⩽ 2L
√

d(T + 1).

Proof. (i) Because (Rd
−)

◦ = Rd
+, and considering the oracle α from Proposi-

tion 5.5.1, establishing ΠRd
+
(y) = y+ for all y ∈ Rd will make the definition of

Blackwell’s algorithm (resp. the greedy Blackwell algorithm) coincide with
RM (resp. RM+). Let y ∈ Rd.

ΠRd
+
(y) = argmin

y′∈Rd
+

∥∥y′ − y
∥∥2
2
= argmin

y′1,...,y
′
d⩾0

d∑
i=1

(y′i − yi)
2

=

(
argmin

yi⩾0
(y′i − yi)

2

)
1⩽i⩽d

=
(
max(yi, 0)

)
1⩽i⩽d

= y+.
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(ii) then follows by noticing that ∆d ⊂ Rd
+ ∩B2 (where B2 is the closed

unit Euclidean ball), and combining Proposition 5.4.1 with the guarantees
for RM and RM+ from Propositions 5.3.4 and 5.4.8.

(iii) simply follows by writing for t ⩾ 0,

‖ut − 〈ut, at〉1‖2 ⩽ ‖ut‖2 + 〈ut, at〉 ‖1‖2 ⩽
√
d ‖ut‖∞ + ‖ut‖∞ ‖at‖1 ‖1‖2

⩽
√
d ‖ut‖∞ + ‖ut‖∞ ‖at‖1

√
d ⩽ 2L

√
d.

Remark 5.5.4. The regret bound of order
√
dT from (iii) in the case where the

payoff vectors (ut)t⩾0 are bounded by L with respect to ‖ · ‖∞ is suboptimal:
recall that the exponential weights algorithm achieves the optimal

√
T log d

regret bound in Proposition 3.4.4. However, the latter bound needs prior
knowledge of L for use in the value of the parameters. In contrast, RM
and RM+ are parameter-free and achieve the interestingly adaptive regret
bound (ii) with no prior knowledge whatsoever.

The RM and RM+ regret minimization algorithm are of high importance
because of their simplicity, ease of implementation, their adaptive character,
and their excellent practical performance, in particular in the context of
learning in games.

5.6 Further applications
We quickly mention a few problems that are variants of regret minimiza-
tion and that can be solved using regret-based approachability algorithm
from Section 5.4 and that either cannot be solved directly using online lin-
ear/convex optimization algorithms, or that can but for which the latter
do not directly give optimal guarantees. The approach has a systematic
character:

• find actions sets A,B, outcome function g : A × B → Rd, and closed
convex cone C satisfying Blackwell’s condition with respect to g;

• find set X0 ⊂ C◦ such that for sequences of actions (at)t⩾0 and (bt)t⩾0

in A and B respectively, quantity

max
x∈X0

〈
T∑
t=0

g(at, bt), x

〉

is equal or is an upper bound on the quantity of interest in the initial
problem;

• choose a closed convex set X such that X0 ⊂ X ⊂ C◦ and a sequence
of regularizers (ht)t∈ 1

2
N on X ;
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• consider UMD iterates associated with regularizers (ht)t∈ 1
2
N and dual

increments (g(at, bt))t⩾0;

• transpose corresponding guarantee using Lemma 5.4.2.

We only present below each problem and its reduction to and approach-
ability problem. The choice of an algorithm in the latter and the derivation
of the corresponding guarantee are left as exercises.

Regret minimization with global costs The problem of regret mini-
mization with global costs is motivated by load balancing and job scheduling,
where at each step, the Decision Maker first chooses a distribution (task al-
location) over d machines, and then observes the cost of using each machine,
which may be different for each machine and each step. The goal of the De-
cision Maker is to minimize, not the sum of the cumulative costs of using
each machine, but a given function of the vector of cumulative costs. A
typical example of such global cost function is the ℓp norm, which includes
as special cases the sum of the costs (for p = 1), as well as the makespan
i.e. the highest cumulative cost (for p = ∞).

Assume d ⩾ 2 and let ‖ · ‖ be a norm on Rd. At step t ⩾ 0,

• the Decision Maker chooses at ∈ ∆d;

• Nature chooses loss vector ℓt ∈ [0, 1]d.

The Decision Maker aims at minimizing the following regret:∥∥∥∥∥
T∑
t=0

at � ℓt

∥∥∥∥∥− min
a∈∆d

∥∥∥∥∥ 1T
T∑
t=0

a� ℓt

∥∥∥∥∥ , T ⩾ 0,

where � denotes the component-wise multiplication. At each step t ⩾ 0,
the i-th component of vector at � ℓ is equal to at,iℓi which corresponds
to the cost of using machine i for a fraction at,i of the job. The regret
is the difference between the actual global cost incurred by the Decision
Maker and the best possible global cost in hindsight for a static distribution
a ∈ ∆d. Important special cases include the makespan which corresponds
to ‖ · ‖ = ‖ · ‖∞: the global cost is then the highest average cost over the
machines; and for ‖ · ‖ = ‖ · ‖1 the global cost simply corresponds to the
sum of the costs of all the machines, and the problem then reduces to basic
regret minimization on the simplex.

This problem can be reduced to an approachability problem by consid-
ering A = ∆d, B = [0, 1]d, outcome function g : A × B → (Rd)2 defined
as

g(a, ℓ) = (a� ℓ, ℓ), a ∈ ∆d, ℓ ∈ [0, 1]d ,
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and target set

C =

{
(y, y′) ∈ (Rd

+)
2, ‖y‖ ⩽ min

a∈∆d

∥∥a� y′
∥∥} ,

which can be proved to satisfy Blackwell’s condition.

Online combinatorial optimization Let d,m ⩾ 1 be integers. Let
I = {1, . . . , d} and P a set which contains subsets of I of cardinality m.
Denote ∆(P ) the unit simplex in RP . At step t ⩾ 0,

• the Decision Maker chooses at ∈ ∆(P );

• Nature chooses and reveals vt ∈ Rd;

• the Decision Maker draws pt ∼ at and gets payoff
∑

i∈pt vt,i.

The quantity to minimize is the following regret:

max
p∈P

T∑
t=0

∑
i∈p

vt,i −
T∑
t=0

∑
i∈pt

vt,i.

This problem can be seen as a basic regret minimization problem on finite
set P , and payoff vectors (

∑
i∈p vi)p∈P which belong to [−m,m]P as soon

as we assume v ∈ [−1, 1]d. The exponential weights algorithm would then
guarantee a regret bound of order m

√
T log |P | by Proposition 3.4.4. How-

ever, it is possible to take advantage of the structure of the problem and
to construct an algorithm which guarantees a significantly better bound, of
order m

√
T log(d/m), which is known to be optimal. This is possible by

reducing the problem problem to a well-chosen approachability problem.
Let A be the d × |P | matrix defined by A = (1{i∈p}) i∈I

p∈P
, and for each

p ∈ P , let ep = (1{i∈p})i∈I ∈ Rd. We consider action sets A = ∆(P ) and
B = [−1, 1]d, outcome function

g(a, v) = v − 〈v, a〉
m

1 ∈ Rd, a ∈ ∆(P ), v ∈ [−1, 1]d,

and target set C = A(∆(P ))◦ where A(∆(P )) denotes the image of the set
∆(P ) via A seen as a linear map from RP to Rd. C can then be proved to
satisfy Blackwell’s condition.

Internal and swap regret We here consider the same framework as in
Section 3.4, only the quantity to be minimized is different. At step t ⩾ 0,

• the Decision Maker chooses at ∈ ∆d,

• Nature chooses and reveals vt ∈ Rd,
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• the Decision Maker draws it ∼ at.

Let Φ be a nonempty subset of II . The quantity to minimize is the Φ-regret
defined as

max
φ∈Φ

T∑
t=0

vt,φ(it) −
T∑
t=0

vt,it ,

and can be interpreted as follows. For a given map φ ∈ Φ,
∑T

t=0 vt,φ(it) is
the cumulative payoff that the Decision Maker would have obtained if he
had chosen φ(i) each time he actually chose i (for all i ∈ I). The Φ-regret
therefore compares the actual cumulative payoff of the Decision Maker with
the best such quantity (for φ ∈ Φ) in hindsight. Is is possible to construct
an algorithm which guarantees on the Φ-regret a bound of order

√
T log |Φ|

by reducing this problem to a well-chosen approachability problem.
Consider action sets A = ∆d and B = [−1, 1]d, outcome function

g(a, v) =

(∑
i∈I

ai(vφ(i) − vi)

)
φ∈Φ

, a ∈ ∆d, v ∈ Rd.

and target set RΦ
−, which can then be proved to satisfy Blackwell’s condition.

An important special case is when Φ is the set of all transpositions of I,
in other words, the set of maps φ : I → I such that there exists i 6= j in I
such that

φ(i) = j, φ(j) = i, and φ(k) = k for all k 6∈ {i, j}.

The Φ-regret is then called the internal regret and can be written

max
i,j∈I

T∑
t=0

1{it=i}(vt,j − vt,i).
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Gradient methods in
optimization

Let X ⊂ Rd be a nonempty closed convex set.

6.1 Lipschitz convex optimization
Let L > 0, ‖ · ‖ a norm in Rd, f : Rd → R a convex function that is L-
Lipschitz continuous for ‖ · ‖ and that admits a minimizer on X , meaning
there exists x∗ ∈ X such that

f(x∗) = min
x∈X

f(x).

The following statement, when used with x = x∗, relates the minimiza-
tion of f on X using subgradients with a quantity that can be interpreted
as a regret in an online linear optimization problem. All algorithms and
results below are then transpositions of familiar online linear optimization
algorithms together with their guarantees.

Lemma 6.1.1. Let (xt)t⩾0 and (gt)t⩾0 sequences in Rd such that gt ∈
∂f(xt). Then for all positive sequence (γt)t⩾0, x ∈ Rd and T ⩾ 0,

min
0⩽t⩽T

f(xt)− f(x) ⩽
(

T∑
t=0

γt

)−1 T∑
t=0

〈γtgt, xt − x〉 .

Proof. For all t ⩾ 0, the definition a subgradient gives

f(xt)− f(x) ⩽ 〈gt, xt − x〉 .

Multiplying by γt and summing over t = 0, . . . , T and dividing by
∑T

t=0 γt
gives ∑T

t=0 γtf(xt)∑T
t=0 γt

− f(x) ⩽
(

T∑
t=0

γt

)−1 T∑
t=0

〈γtgt, xt − x〉 .

70
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The result follows.

We first consider the following very general extension of projected (sub)gradient
descent, which writes xt+1 = ΠX (xt − γtgt) (t ⩾ 0), and then derive several
corollaries.

Proposition 6.1.2 (Strict UMD iterates for Lipschitz convex optimization).
Let K,R > 0, h a regularizer on X such that x∗ ∈ domh and which is K-
strongly convex for ‖ · ‖, and ((xt, yt))t⩾0 a sequence of strict UMD iterates
associated with regularizer h and dual increments (−γtgt)t⩾0 where gt ∈
∂f(xt) for all t ⩾ 0.

(i) Let T ⩾ 0. Then,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
(

T∑
t=0

γt

)−1(
Dh(x∗, x0; y0) +

L2

2K

T∑
t=0

γ2t

)
.

(ii) Let γ > 0. If γt = γ
√
2K/(L

√
t+ 1) for all t ⩾ 0, then

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
L√
2KT

(
Dh(x∗, x0; y0)

γ
+ γ(1 + log(T + 1))

)
.

(iii) If Dh(x∗, x0; y0) ⩽ R2, then γ = R yields,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
RL√
2KT

(2 + log(T + 1)) .

Corollary 6.1.3 (DA for Lipschitz convex optimization). Consider the as-
sumptions from Proposition 6.1.2. In particular, the same guarantees hold
if:

xt = ∇h∗

(
y0 −

t−1∑
s=0

γsgs

)
, t ⩾ 0,

In the context of optimizing a unique objective function, online mir-
ror descent is called mirror descent (MD). Proposition 6.1.2 reduces to the
following.

Corollary 6.1.4 (MD for Lipschitz convex optimization). Let K,R, γ > 0,
‖ · ‖ a norm on Rd , H a mirror map compatible with X and K-strongly
convex for ‖ · ‖, x0 ∈ X ∩ int domH and for all t ⩾ 0,

xt+1 = argmin
x∈X

{〈∇H(xt)− γtgt, x〉 −H(x)}

where gt ∈ ∂f(xt) and γt = γ
√
2K/(L

√
t+ 1).
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(i) Let T ⩾ 0. Then,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
L√
2KT

(
DH(x∗, x0)

γ
+ γ(1 + log(T + 1))

)
.

(ii) If DH(x∗, x0; y0) ⩽ R2, then γ = R yields,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
RL√
2KT

(2 + log(T + 1)) .

Corollary 6.1.5 (Projected GD for Lipschitz convex optimization). Assume
that f is L-Lipschitz continuous for ‖ · ‖2. Let R, γ > 0, x0 ∈ X and for all
t ⩾ 0,

xt+1 = ΠX (xt − γtgt),

where gt ∈ ∂f(xt) and γt = γ
√
2/(L

√
t+ 1).

(i) Let T ⩾ 0. Then,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
L√
2T

(
‖x∗ − x0‖22

2γ
+ γ(1 + log(T + 1))

)
.

(ii) If 1
2 ‖x∗ − x0‖22 ⩽ R2, then γ = R yields,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
RL√
2T

(2 + log(T + 1)) .

The convergence speed obtained in the above statement in (log T )/
√
T .

Although not an issue in practice, it is possible to shave off the log T factor
using DA with time-dependent parameters instead of time-dependent step-
sizes.

Proposition 6.1.6 (DA with time-dependent parameters for Lipschitz con-
vex optimization). Let K,R, η > 0, h a regularizer on X such that x∗ ∈
domh and which is K-strongly convex for ‖ · ‖, y0 ∈ Rd and

xt = ∇h∗

(
ηt

(
y0 −

t−1∑
t=0

gt

))
, t ⩾ 0,

where gt ∈ ∂f(xt) and ηt = η
√
2K/(L

√
t+ 1) for all t ⩾ 0.

(i) Let T ⩾ 0. Then,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
(
h(x∗)−minh

η
+ η

)
L√

2K(T + 1)
.
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(ii) If h(x∗)−minh ⩽ R2, then η = R yields for all T ⩾ 0,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽ LR

√
2

K(T + 1)
.

Proof. Combine the regret bound for DA with time-dependent parameters
from Proposition 3.2.6 with Lemma 6.1.1 applied with constant γt = 1
(t ⩾ 0).

All above guarantees need prior knowledge of Lipschitz coefficient L
because some parameters of step-sizes must be chosen accordingly to obtain
the best bound.

6.2 Smooth convex optimization
Let L > 0, ‖ · ‖ be a norm in Rd and f : Rd → R be a convex that is
L-smooth for ‖ · ‖, and that admits a minimizer on X , meaning there exists
x∗ ∈ X such that

f(x∗) = min
x∈X

f(x).

We first give the following very general extension of gradient descent with
constant step-size and then derive corollaries.

Proposition 6.2.1. Let K > 0, h a regularizer on X such that x∗ ∈
domh and which is K-strongly convex for ‖ · ‖ and ((xt, yt))t⩾0 a sequence
of strict UMD iterates associated with regularizer h and dual increments
(−K

L∇f(xt))t⩾0. Then for all T ⩾ 0,

f(xT )− f(x∗) ⩽
L

K

Dh(x∗, x0; y0)

T
.

Proof. Let t ⩾ 0. The characterization of smoothness from Proposition 1.6.4
gives

Df (xt+1, xt) ⩽
L

2
‖xt+1 − xt‖2 .

Moreover, using the strong convexity of h, we can write

Df (xt+1, xt) ⩽
L

K
D′

t, (6.1)

where D′
t = Dh(xt+1, xt; yt). Applying Lemma 2.4.1 for any x ∈ domh

gives, with notation therein:

Dt+1 ⩽ Dt +
K

L
〈∇f(xt), x− xt+1〉 −D′

t.
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Using (6.1) and the convexity of f , we obtain

Dt+1 ⩽ Dt +
K

L
〈∇f(xt), x− xt〉+

K

L
〈∇f(xt), xt − xt+1〉 −

K

L
Df (xt+1, xt)

= Dt +
K

L
(f(x)− f(xt)− 〈∇f(xt), xt − xt+1〉 −Df (xt+1, xt))

= Dt +
K

L
(f(x)− f(xt+1)) .

Applying the above for x = xt (which is possible because xt = ∇h∗(yt) does
belong to domh) gives

f(xt+1)− f(xt) ⩽ L (Dh(xt, xt; yt)−Dh(xt, xt+1; yt+1))

= −L ·Dh(xt, xt+1; yt+1) ⩽ 0.

Then, considering x = x∗ (which belongs to domh by assumption) and
summing gives

T (f(xT )− f(x∗)) ⩽
T−1∑
t=0

(f(xt+1)− f(x∗)) ⩽
L

K
Dh(x∗, x0; y0),

hence the result.

Corollary 6.2.2 (DA for smooth convex optimization). Let h satisfying the
assumptions from Proposition 6.2.1, y0 ∈ Rd and

xt = ∇h∗

(
y0 −

L

K

t−1∑
s=0

∇f(xs)

)
, t ⩾ 0.

Then for all T ⩾ 0,

f(xT )− f(x∗) ⩽
L

K

Dh(x∗, x0; y0)

T
.

Corollary 6.2.3 (MD for smooth convex optimization). Let H be a mirror
map compatible with X and K-strongly convex for ‖ · ‖, x0 ∈ X ∩ int domH
and

xt+1 = argmax
x∈X

{〈
∇H(xt)−

K

L
∇f(xt), x

〉
−H(x)

}
, t ⩾ 0,

Then for all T ⩾ 0,

f(xT )− f(x∗) ⩽
L

K

DH(x∗, x0)

T
.
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Corollary 6.2.4 (Projected GD for smooth convex optimization). Assume
that f is L-smooth for ‖ · ‖2. Let x0 ∈ X and

xt+1 = ΠX

(
xt −

K

L
∇f(xt)

)
, t ⩾ 0.

Then for all T ⩾ 0,

f(xT )− f(x∗) ⩽
L ‖x0 − x∗‖22

2T
, T ⩾ 0.

All above guarantees need prior knowledge of L.

6.3 Nesterov’s acceleration
We consider the same smooth convex optimization problem as in Section 6.2,
where smoothness is with respect to a given norm ‖ · ‖. We now define and
analyze an extension of Nesterov’s accelerated gradient. This algorithm
improves the convergence rate from 1/T to 1/T 2.

Proposition 6.3.1 (Accelerated UMD for smooth convex optimization).
Let K > 0, h a regularizer on X such that x∗ ∈ domh and which is K-
strongly convex for ‖ · ‖, (γt)t⩾0 and (λt)t⩾0 positive sequences. Let ((vt, wt, xt, wt))t⩾0

a sequence in (Rd)4 such that

• v0 = w0 = x0 = ∇h∗(y0),

• ((xt, yt))t⩾0 is a sequence of strict UMD iterates associated with regu-
larizer h and dual increments (−γt∇f(wt))t⩾0,

• For all t ⩾ 0,

wt = (1− λt)vt + λtxt, (6.2)
vt+1 = (1− λt)vt + λtxt+1. (6.3)

where γ0 = 1/L and for all t ⩾ 0,

γt+1 =
1 +

√
1 + (2Lγt)2

2L
, and λt =

1

Lγt
.

Then, for all T ⩾ 0,

f(vT )− f(x∗) ⩽
4LDh(x∗, x0; y0)

KT 2
.

With first gather a few properties that are immediate from the above
definition.
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Lemma 6.3.2. With assumptions from Proposition 6.3.1, for t ⩾ 0,

(i) λt ∈ (0, 1),

(ii) wt − xt = (λ−1
t − 1)(vt − wt),

(iii) γtλ
−1
t − γt+1(λ

−1
t+1 − 1) = 0,

(iv) For T ⩾ 0, γTλ−1
T =

∑T
t=0 γt ⩾

K(T+1)2

4L .

Sequence (xt, yt)t⩾0 being strict UMD iterates, the following statement
follows from Lemma 2.4.1.

Lemma 6.3.3. With assumptions from Proposition 6.3.1, for T ⩾ 0,

T∑
t=0

γt 〈∇f(wt), xt+1 − x∗〉 ⩽ Dh(x∗, x0; y0)−
T∑
t=0

Dh(xt+1, xt; yt).

Proof of Proposition 6.3.1. Let t ⩾ 0. Using the definition of smoothness of
f between points wt and vt+1:

f(vt+1)− f(wt) ⩽ 〈∇f(wt), vt+1 − wt〉+
L

2
‖vt+1 − wt‖2

= λt 〈∇f(wt), xt+1 − xt〉+
Lλ2

t

2
‖xt+1 − xt‖2

⩽ λt 〈∇f(wt), xt+1 − xt〉+
Lλ2

t

K
Dh(xt+1, xt; yt),

where we used relation (6.3) from the definition of the algorithm to get the
second line, and the K-strong convexity of h (Proposition 1.6.4) to get the
third line. Multiplying by Lγ2t /K and simplifying gives:

γtλ
−1
t (f(vt+1)− f(wt)) ⩽ γt 〈∇f(wt), xt+1 − xt〉+Dh(xt+1, xt; yt). (6.4)

Besides, we can write

xt+1 − xt = (xt+1 − x∗) + (x∗ − wt) + (wt − xt)

= (xt+1 − x∗) + (x∗ − wt) + (λ−1
t − 1)(vt − wt),

where the second line uses relation (ii) from Lemma 6.3.2. Injecting the
above into 〈∇f(wt), xt+1 − xt〉 gives:

〈∇f(wt), xt+1 − xt〉 = 〈∇f(wt), xt+1 − x∗〉+ 〈∇f(wt), x∗ − wt〉
+ (λ−1

t − 1) 〈∇f(wt), vt − wt〉
⩽ 〈∇f(wt), xt+1 − x∗〉+ f(x∗)− f(wt)

+ (λ−1
t − 1) (f(vt)− f(wt)) .

(6.5)
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Combining inequalities (7.4) and (7.3), and summing over t = 0, . . . , T gives:

T∑
t=0

γtλ
−1
t (f(vt+1)− f(wt)) ⩽ Dh(x∗, x0; y0)−

T∑
t=0

Dh(xt+1, xt; yt)

+
T∑
t=0

γt (f(x∗)− f(wt)) +

T∑
t=0

γt(λ
−1
t − 1) (f(vt)− f(wt))

+
T∑
t=0

Dh(xt+1, xt; yt),

where we used Lemma 6.3.3 to get the first two terms of the right-hand
side. Then, simplifying and moving all values of f (except for f(x∗)) to the
left-hand side, we get:

T∑
t=0

(
γt + γt(λ

−1
t − 1)− γtλ

−1
t

)
f(wt) +

T∑
t=1

(
γt−1λ

−1
t−1 − γt(λ

−1
t − 1)

)
f(vt)

+ γ0(λ
−1
0 − 1)f(v0) + γTλ

−1
T f(vT+1) ⩽ Dh(x∗, x0; y0) +

(
T∑
t=0

γt

)
f(x∗).

The factor in front of f(wt) is clearly zero, as well as γ0(λ−1
0 −1). The result

then follows by applying properties (iii) and (iv) from Lemma 6.3.2.

Corollary 6.3.4 (Accelerated dual averaging for smooth convex optimiza-
tion). Let y0 ∈ Rd, x0 = ∇h∗(y0) and for all t ⩾ 0,

wt = (1− λt)vt + λtxt,

xt+1 = ∇h∗

(
y0 −

t∑
s=0

γs∇f(ws)

)
,

vt+1 = (1− λt)vt + λtxt+1,

where h, (γt)t⩾0 and (λt)t⩾0 satisfy the assumptions from Proposition 6.3.1.
Then for all T ⩾ 0,

f(vT )− f(x∗) ⩽
4L ·Dh(x∗, x0; y0)

KT 2
.

Proof. Corresponds to Proposition 6.1.2 where yt+1 = yt − γt∇f(wt) for all
t ⩾ 0.

Corollary 6.3.5 (Accelerated mirror descent smooth convex optimization).
Let H be a mirror map compatible with X , K-strongly convex for ‖ · ‖, and
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such that x∗ ∈ X ∩ domH. Let x0 ∈ X ∩ int domH and for all t ⩾ 0,

wt = (1− λt)vt + λtxt,

xt+1 = argmin
x∈X

{〈∇H(xt)− γt∇f(wt), x〉+H(x)} ,

vt+1 = (1− λt)vt + λtxt+1,

where (γt)t⩾0 and (λt)t⩾0 satisfy the assumptions from Proposition 6.3.1.
Then for all T ⩾ 0,

f(vT )− f(x∗) ⩽
4L ·DH(x∗, x0)

KT 2
.

Proof. Corresponds to Proposition 6.1.2 where yt = ∇H(xt) for all t ⩾
0.

Corollary 6.3.6 (Accelerated gradient descent smooth convex optimiza-
tion). Assume that f is L-smooth for ‖ · ‖2. Let x0 = v0 = w0 ∈ Rd and for
all t ⩾ 0,

wt = (1− λt)vt + λtxt,

xt+1 = xt − γt∇f(wt),

vt+1 = (1− λt)vt + λtxt+1,

where (γt)t⩾0 and (λt)t⩾0 satisfy the assumptions from Proposition 6.3.1.
Then, the above can be rewritten as

vt+1 = wt − λtγt∇f(wt)

wt+1 = vt+1 +
λt+1(1− λt)

λt
(vt+1 − vt),

and for all T ⩾ 0,

f(vT )− f(x∗) ⩽
2L ‖x0 − x∗‖22

T 2
.

Proof. The definition and the guarantee correspond to Corollary 6.1.4 with
H chosen as the Euclidean mirror map and K = 1. Besides, for t ⩾ 0,

vt+1 = wt + λt(xt+1 − xt) = wt − λtγt∇f(wt),

and

wt+1 = (1− λt+1)vt+1 + λt+1xt+1 = vt+1 + λt+1(xt+1 − vt+1)

= vt+1 + λt+1(1− λt)(xt+1 − vt)

= vt+1 +
λt+1(1− λt)

λt
(vt+1 − vt).
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6.4 Stochastic nonsmooth convex optimization
Let f : Rd → R a convex function that admits a minimizer on X , meaning
there exists x∗ ∈ X such that

f(x∗) = min
x∈X

f(x).

We adapt the approach from Section 6.1 to the case where the algorithm only
accesses unbiaised stochastic estimators of the (sub)gradients. We present
a UMD-based generalization of the celerabrated stochastic gradient descent
(SGD).

Example 6.4.1 (Finite-sum optimization). Consider an objective function
f that is given as

f(x) =
1

n

n∑
i=1

fi(x),

where each function fi : Rd → R (1 ⩽ i ⩽ n) is convex. Important such
problems include empirical risk minimization, log-likelihood maximization,
etc. A possible way of reducing the per-iteration computational cost is to
replace, at each step t ⩾ 0, the computation of an exact (sub)gradient of
f at xt by the computation of a unbiaised stochastic estimator by drawing
an index it uniformly, and considering a subgradient gt ∈ ∂fit(xt). Then, it
can be verified that indeed E [gt|xt] ∈ ∂f(xt).

Lemma 6.4.2. Let (xt)t⩾0 and (gt)t⩾0 be random sequences in Rd such that
for all t ⩾ 0, E [gt |xt] ∈ ∂f(xt), and (γt)t⩾0 a positive sequence, then for
all x ∈ Rd and T ⩾ 0,

E
[
min
0⩽t⩽T

f(xt)− f(x)

]
⩽
(

T∑
t=0

γt

)−1

E

[
T∑
t=0

〈γtgt, xt − x〉

]
.

Proof. For t ⩾ 0,

E

[
T∑
t=0

〈γtgt, xt − x〉

]
= E

[
T∑
t=0

E [〈γtgt, xt − x〉 |xt]

]

= E

[
T∑
t=0

γt 〈E [gt |xt] , xt − x〉

]

⩾ E

[
T∑
t=0

γt (f(xt)− f(x))

]

⩾ E

[(
T∑
t=0

γt

)(
min
0⩽t⩽T

f(xt)− f(x)

)]
,

where the penultimate inequality uses the definition of a subgradient. Hence
the result.



Stochastic nonsmooth convex optimization 80

Proposition 6.4.3 (Stochastic UMD for stochastic nonsmooth convex op-
timization). Let K,R, σ > 0, h a regularizer on X such that x∗ ∈ domh and
which is K-strongly convex for ‖ · ‖, and random sequences (xt)t⩾0, (yt)t⩾0

and (gt)t⩾0 in Rd and (γt)t⩾0 a positive sequence such that

• (x0, y0) is deterministic,

• ((xt, yt))t⩾0 is almost-surely a sequence of strict UMD iterates associ-
ated with regularizer h and dual increments (−γtgt)t⩾0,

• E [gt |xt] ∈ ∂f(xt) for all t ⩾ 0,

• E
[
‖gt‖2

∣∣∣xt] ⩽ σ2 for all t ⩾ 0.

(i) Let T ⩾ 0. Then,

E
[
min
0⩽t⩽T

f(xt)− f(x∗)

]
⩽
(

T∑
t=0

γt

)−1(
Dh(x∗, x0; y0) +

σ2

2K

T∑
t=0

γ2t

)
.

(ii) Let γ > 0. If γt = γ
√
2K/(σ

√
t+ 1) for all t ⩾ 0, then

E
[
min
0⩽t⩽T

f(xt)− f(x∗)

]
⩽ σ√

2KT

(
Dh(x∗, x0; y0)

γ
+ γ(1 + log(T + 1))

)
.

(iii) If Dh(x∗, x0; y0) ⩽ R2, then γ = R yields,

E
[
min
0⩽t⩽T

f(xt)− f(x∗)

]
⩽ Rσ√

2KT
(2 + log(T + 1)) .

Proof. Lemma 6.4.2 gives

E
[
min
0⩽t⩽T

f(xt)− f(x∗)

]
⩽
(

T∑
t=0

γt

)−1

E

[
T∑
t=0

〈γtgt, xt − x∗〉

]
.

Because x∗ ∈ domh, UMD Lemma (Lemma 2.4.1) bounds the expectation
from the above right-hand side as

E

[
T∑
t=0

〈γtgt, xt − x∗〉

]
⩽ E

[
Dh(x∗, x0; y0) +

1

2K

T∑
t=0

‖γtgt‖2
]

= Dh(x∗, x0; y0) +
1

2K
E

[
T∑
t=0

γ2t E
[
‖gt‖2

∣∣∣xt]]

⩽ Dh(x∗, x0; y0) +
σ2

2K

T∑
t=0

γ2t ,

which proves (i). (ii) and (iii) follow.



Chapter 7

AdaGrad

We present in this chapter two instances of the AdaGrad family of algo-
rithms. It is one of the most important innovations in the topic of regret
minimization because of the adaptive property of its regret bounds and be-
cause it has led to great success in practice in optimization and deep learning
through its many variants, such as RMSprop, Adam, etc.

Let X be a nonempty closed convex subset of Rd.

7.1 Definitions
Let (ut)t⩾0 be a sequence in Rd, x0 ∈ X and γ > 0.

Definition 7.1.1. The associated sequence of AdaGrad-Norm iterates on
X is given by

xt+1 = ΠX

(
xt +

γ∑t
s=0 ‖us‖

2
2

ut

)
, t ⩾ 0,

with convention 0/0 = 0.

Definition 7.1.2. Let ε > 0. The associated sequence (xt)t⩾0 of AdaGrad-
Diagonal iterates on X is defined for each t ⩾ 0 as

x′t+1 =

x′t,i +
γ

ε+
√∑t

s=0 u
2
s,i

ut,i


1⩽i⩽d

,

xt+1 = argmin
x∈X

∥∥x− x′t+1

∥∥
At

,

where

At = diag

ε+

√√√√+

t∑
s=0

u2s,i


1⩽i⩽d

.
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7.2 Regret bounds
Lemma 7.2.1. Let (at)t⩾0 be a nonnegative sequence. Then for all T ⩾ 0,

T∑
t=0

at√∑t
s=0 as

⩽ 2

√√√√ T∑
t=0

at.

with convention 0/0 = 0.

Proof. For all t ⩾ 0, denote bt =
∑t

s=0 as. If bt = 0 for some t ⩾ 0, then
bs = 0 for all s ⩽ t and the corresponding terms in the sum are zero because
(at)t⩾0 is nonnegative by assumption. Without loss of generality, we assume
a0 = b0 > 0. Then,

T∑
t=0

bt − bt−1√
bt

⩽
T∑
t=0

bt√
bt

−
T∑
t=1

bt−1√
bt

=

T∑
t=0

bt√
bt

−
T−1∑
t=0

bt√
bt+1

=
√
bT +

T−1∑
t=0

bt

(
1√
bt

− 1√
bt+1

)

=
√
bT +

T−1∑
t=0

bt(
√
bt+1 −

√
bt)√

bt
√
bt+1

⩽
√
bT +

T−1∑
t=0

(
√
bt+1 −

√
bt) ⩽ 2

√
bT ,

hence the result.

Lemma 7.2.2. Let w1, . . . , wd ⩾ 0. Then,

d∑
i=1

√
wi = inf

v∈(R∗
+)d

∥v∥1⩽1

√√√√ d∑
i=1

wi

vi
.

Proof. Let v1, . . . , vd > 0 such that
∑d

i=1 vi ⩽ 1. Then using Jensen’s
inequality for z 7→ z2,(

d∑
i=1

(
vi∑d
j=1 vj

)(√
wi

vi

))2

⩽
d∑

i=1

vi∑d
j=1 vj

wi

v2i
⩽

d∑
i=1

wi

vi
.

Taking the square root gives

d∑
i=1

√
wi ⩽

√√√√ d∑
i=1

wi

vi
.
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The above inequality is an equality if w1 = · · · = wd = 0. Otherwise, let
ε > 0 and consider

vi =

√
wi + ε∑d

j=1

√
wj + ε

, 1 ⩽ i ⩽ d,

which are positive and satisfy v1 + · · ·+ vd = 1. Then,√√√√ d∑
i=1

wi

vi
=

√√√√ d∑
i=1

wi√
ε+ wi

d∑
j=1

√
ε+ wj ,

which converges to
∑d

i=1

√
wi as ε → 0+, hence the result.

Proposition 7.2.3 (Regret bound for AdaGrad-Norm). Let (ut)t⩾0 be a
sequence in Rd, x0 ∈ X , ε, γ > 0 and (xt)t⩾0 the associated sequence of
AdaGrad-Norm iterates on X .

(i) Let x ∈ X and T ⩾ 0.

T∑
t=0

〈ut, x− xt〉 ⩽
(
max0⩽t⩽T ‖xt − x‖22

2γ
+ γ

)√√√√ T∑
t=0

‖ut‖22.

(ii) If R ⩾ max0⩽t⩽T ‖xt − x‖2 then γ = R/
√
2 yields

T∑
t=0

〈ut, x− xt〉 ⩽ R

√√√√2
T∑
t=0

‖ut‖22.

Proof. If ut = 0 for all t ⩾ 0, the result holds. Otherwise, consider

τ = min {t ⩾ 0, ut 6= 0} .

Let (γt)t⩾0 be a positive and nonincreasing sequence defined as

γt =


γ

‖uτ‖2
if t ⩽ τ

γ√∑t
s=0 ‖us‖

2
2

if t ⩾ τ .

Then, (xt)t⩾0 is a sequence of online gradient descent iterates on X with
step-sizes (γt)t⩾0, because for 0 ⩽ t ⩽ τ − 1, ut = 0 and thus,

xt+1 = ΠX (xt) = ΠX (xt + γtut) ,
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and for t ⩾ τ ,

xt+1 = ΠX

xt +
γ√∑t

s=0 ‖us‖
2
2

ut

 = ΠX (xt + γtut) .

Then the regret bound for OGD with time-dependent step-sizes from Corol-
lary 3.3.16 gives

T∑
t=0

〈ut, x− xt〉 ⩽
max
0⩽t⩽T

‖x− xt‖22
2γT

+
T∑
t=0

γt ‖ut‖22
2

=

max
0⩽t⩽T

‖xt − x‖22
2γ

√√√√ T∑
t=0

‖ut‖22 +
γ

2

T∑
t=0

‖ut‖22√∑T
t=0 ‖ut‖

2
2

⩽
(
max0⩽t⩽T ‖xt − x‖22

2γ
+ γ

)√√√√ T∑
t=0

‖ut‖22.

using Lemma 7.2.1. Hence the result.

Remark 7.2.4.

Proposition 7.2.5 (Regret bound for AdaGrad-Diagonal). Let (ut)t⩾0 be
a sequence in Rd, x0 ∈ X , ε, γ > 0 and (xt)t⩾0 the associated sequence of
AdaGrad-Diagonal iterates on X .

(i) Then for all x ∈ X and T ⩾ 0,

T∑
t=0

〈ut, x− xt〉 ⩽
ε

2γ
‖x0 − x‖22+

(
max0⩽t⩽T ‖xt − x‖2∞

2γ
+ γ

)
d∑

i=1

√√√√ T∑
t=0

u2t,i.

(ii) In particular, if R ⩾ max0⩽t⩽T ‖xt − x‖∞, then γ = R/
√
2 yields,

T∑
t=0

〈ut, x− xt〉 ⩽ R

 εd√
2
+

d∑
i=1

√√√√2
T∑
t=0

u2t,i

 .

(iii) Moreover,

d∑
i=1

√√√√ T∑
t=0

u2t,i = inf
v∈(R∗

+)d

∥v∥1⩽d

√√√√d
T∑
t=0

‖ut‖2diag(v)−1 ⩽

√√√√d
T∑
t=0

‖ut‖22.
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Proof. Let (At)t⩾0 be the sequence of symmetric positive definite matrices
defined as

At = diag

ε+

√√√√ T∑
t=0

u2t,i


1⩽i⩽d

,

and (Ht)t⩾0 the sequence of mirror maps defined as

Ht(x) =
1

2γ
‖x‖2At

=
1

2γ
〈x,Atx〉 , x ∈ Rd, t ⩾ 0.

Then, (xt)t⩾0 corresponds to a sequence of online mirror descent iterates
associated with mirror maps (Ht)t⩾0 and dual increments (ut)t⩾0. Then
Proposition 3.3.13 gives, with notation therein,

T∑
t=0

〈ut, x− xt〉 ⩽ DH0(x, x0)−DHT+1
(x, xT+1)+

T∑
t=0

D̃∆
t+1/2+

T∑
t=0

D̃∗
t , (7.1)

where for t ⩾ 0,

D̃∆
t+1/2 = DHt+1−Ht(x, xt+1) = DHt+1(x, xt+1)−DHt(x, xt+1), (7.2)

and since Ht is 1/γ-strongly convex for ‖ · ‖At
by Corollary 1.6.9,

D̃∗
t = DH∗

t
(∇Ht(xt) + ut,∇Ht(xt)) ⩽

γ

2
‖ut‖2A−1

t
.

Summing D̃∆
t+1/2 and using using the expression of the associated Bregman

divergence from Example 1.5.7 gives

T∑
t=0

D̃∆
t+1/2 =

T∑
t=0

(
DHt+1(x, xt+1)−DHt(x, xt+1)

)
= DHT+1

(x, xT+1)−DHT
(x, xT+1) +

T∑
t=1

DHt−Ht−1(x, xt)

(7.3)
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and the above last sum is bounded as
T∑
t=1

DHt−Ht−1(x, xt) =
1

2γ

T∑
t=1

‖x− xt‖2At−At−1

=
1

2γ

T∑
t=1

d∑
i=1

(xi − xt,i)
2(At,ii −At−1,ii)

⩽
max
0⩽t⩽T

‖x− xt‖2∞
2γ

d∑
i=1

T∑
t=1

(At,ii −At−1,ii)

=

max
0⩽t⩽T

‖x− xt‖2∞
2γ

d∑
i=1

(AT,ii −A0,ii)

=

max
0⩽t⩽T

‖x− xt‖2∞
2γ

d∑
i=1

ε+

√√√√ T∑
t=0

u2t,i − ε− |u0,i|


=

max
0⩽t⩽T

‖x− xt‖2∞
2γ

 d∑
i=1

√√√√ T∑
t=0

u2t,i


−

max
0⩽t⩽T

‖x− xt‖2∞
2γ

d∑
i=1

|u0,i| .

(7.4)

Besides,

DH(x, x0) =
1

2γ
‖x− x0‖2A0

=
1

2γ

d∑
i=1

(xi − x0,i)
2(ε+ |u0,i|)

⩽ ε

2γ
‖x− x0‖22 +

max
0⩽t⩽T

‖x− xt‖2∞
2γ

d∑
i=1

|u0,i|

(7.5)

Finally, summing D̃∗
t gives

T∑
t=0

D̃∗
t ⩽ γ

2

T∑
t=0

‖ut‖2A−1
t

=
γ

2

T∑
t=0

d∑
i=1

u2t,i

ε+
√∑t

s=0 u
2
s,i

⩽ γ

2

T∑
t=0

d∑
i=1

u2t,i√∑t
s=0 u

2
s,i

⩽ γ
d∑

i=1

√√√√ T∑
t=0

u2t,i,

(7.6)

where we used Lemma 7.2.1 for the last inequality.
Then combining (7.1), (7.2), (7.3), (7.4), (7.5) and (7.6) gives (i), and

(ii) follows. Using Lemma 7.2.2 gives (iii).
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7.3 Application to nonsmooth convex optimiza-
tion

Let f : Rd → R be a convex function that admits a minimizer X , in other
words, there exists x∗ ∈ X such that

f(x∗) = min
x∈X

f(x).

The following result demonstrates that AdaGrad-Norm is adaptive to the
Lipschitz continuity of the objective function, meaning that it guarantees a
convergence bound of order L/

√
T without prior knowledge of the Lipschitz

coefficient L.

Proposition 7.3.1 (AdaGrad-Norm for nonsmooth convex optimization).
Assume that f is L-Lipschitz for ‖ · ‖2. Let R, γ > 0, x0 ∈ X and

xt+1 = ΠX

(
xt −

γ∑t
s=0 ‖gs‖

2
2

gt

)
, t ⩾ 0,

where gt ∈ ∂f(xt) for all t ⩾ 0.

(i) Then for all T ⩾ 0,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
(
max0⩽t⩽T ‖xt − x‖22

2γ
+ γ

)
L√
T + 1

.

(ii) If R ⩾ max0⩽t⩽T ‖xt − x‖2, then γ = R/
√
2 yields

min
0⩽t⩽T

f(xt)− f(x∗) ⩽ RL

√
2

T + 1
.

Proof. Combining the general regret bound for AdaGrad-Norm (Proposi-
tion 7.2.3) and Lemma 6.1.1 gives

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
1

T + 1

(
max0⩽t⩽T ‖xt − x‖22

2γ
+ γ

)√√√√ T∑
t=0

‖gt‖22.

The Lipschitz continuity of f gives ‖gt‖2 ⩽ L for all t ⩾ 0. The result
follows.

The following result demonstrates that, in the context of stochastic con-
vex optimization, AdaGrad-Norm is adaptive to the second-order moment
of the gradient estimators: if the latter are bounded by σ2, it achieves a
convergence bound of order σ/

√
T without prior knowledge of σ.
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Proposition 7.3.2 (AdaGrad-Norm for stochastic nonsmooth convex opti-
mization). Let R, σ > 0, x0 ∈ X and

xt+1 = ΠX

xt −
R√

2
∑t

s=0 ‖gs‖
2
2

gt

 , t ⩾ 0,

where for each t ⩾ 0, almost-surely,

E [gt |xt] ∈ ∂f(xt), E
[
‖gt‖22

∣∣∣xt] ⩽ σ2, and ‖xt − x∗‖2 ⩽ R.

Then, for all T ⩾ 0,

E
[
min
0⩽t⩽T

f(xt)− f(x∗)

]
⩽ Rσ

√
2

T + 1
.

Proof. Combining the general regret bound for AdaGrad-Norm (Proposi-
tion 7.2.3) and Lemma 6.4.2 gives

E
[
min
0⩽t⩽T

f(xt)− f(x∗)

]
⩽ R

T + 1
E


√√√√2

T∑
t=0

‖gt‖22

 .

Then using Jensen’s inequality with the concavity of the square root,

E


√√√√2

T∑
t=0

‖gt‖22

 ⩽

√√√√2 · E

[
T∑
t=0

‖gt‖22

]

⩽ R

T + 1
E


√√√√2

T∑
t=0

E
[
‖gt‖22

∣∣∣xt]


= Rσ

√
2

T + 1
,

hence the result.

7.4 Application to smooth convex optimization
Let f : Rd → R be a convex function that is L-smooth for ‖ · ‖2 and that
admits a global minimizer x∗:

f(x∗) = min
x∈Rd

f(x).

Lemma 7.4.1. For all x ∈ Rd,

‖∇f(x)‖22 ⩽ 2L (f(x)− f(x∗)) .
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Proof. Let x′ ∈ Rd. The definition of smoothness gives

f(x′)− f(x)−
〈
∇f(x), x′ − x

〉
⩽ L

2

∥∥x′ − x
∥∥2
2
.

For x′ = x− 1
L∇f(x), the above simplifies into

f(x′)− f(x) +
1

2L
‖∇f(x)‖22 .

The result follows because f(x∗) ⩽ f(x′).

The following statement proves that AdaGrad-Norm is adaptive to the
smoothness of the objective function: it achieves a L/T convergence bound
without prior knowledge of the smootness coefficient L.

Proposition 7.4.2 (AdaGrad-Norm for smooth convex optimization). As-
sume x∗ ∈ X . Let γ > 0, x0 ∈ X and

xt+1 = ΠX

(
xt −

γ∑t
s=0 ‖∇f(xs)‖22

∇f(xt)

)
, t ⩾ 0.

(i) Let T ⩾ 0. Then,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽

 max
0⩽t⩽T

‖xt − x‖22
2γ

+ γ

2

2L

T + 1
.

(ii) Let R ⩾ max0⩽t⩽T ‖xt − x∗‖2, then γ = R/
√
2 yields,

min
0⩽t⩽T

f(xt)− f(x∗) ⩽
4R2L

T + 1
.

Proof. Using general regret bound for AdaGrad-Norm (Proposition 7.2.3)
and the convexity of f ,

T∑
t=0

(f(xt)− f(x∗)) ⩽
T∑
t=0

〈∇f(xt), xt − x∗〉

⩽

 max
0⩽t⩽T

‖xt − x‖22
2γ

+ γ


√√√√ T∑

t=0

‖∇f(xt)‖22

⩽

 max
0⩽t⩽T

‖xt − x‖22
2γ

+ γ


√√√√2L

T∑
t=0

(f(xt)− f(x∗)),
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where we used Lemma 7.4.1 for the last inequality. Dividing by
√∑T

t=0(f(xt)− f(x∗))
and taking the square gives

T∑
t=0

(f(xt)− f(x∗)) ⩽

 max
0⩽t⩽T

‖xt − x‖22
2γ

+ γ

2

2L.

The above left-hand side is bounded from below as
T∑
t=0

(f(xt)− f(x∗)) ⩾
T∑
t=0

(
min
0⩽t⩽T

f(xt)− f(x∗)

)
⩾ T

(
min
0⩽t⩽T

f(xt)− f(x∗)

)
,

hence the result.



Chapter 8

Monotone operators and
fixed point iterations

This chapter gives a quick preview of monotone operators, fixed point iter-
ations, and their relation to regret minimization. Monotone operators are a
generalization of the gradient of a convex function, and allow to deal with
various problems such as convex-concave saddle-points, convex games, finite
two-player zero-sum games, etc.

Monotone operators can be defined with set-valued mappings, to general-
ize subdifferentials, but we restrict to single-valued mappings for simplicity.

Let X ⊂ Rd be nonempty closed and convex. I denotes the identity map
on a set which will be clear from the context.

8.1 Monotone operators
Recall the minimization of a differentiable convex function f : Rd → R. A
global solution corresponds to a zero of the gradient: the corresponding no-
tion below is the zero of the monotone operator. Regarding the constrained
problem on X , according to Proposition 1.2.10, the minimizer x∗ of f on X
is characterized by the following variational inequality:

∀x ∈ X , 〈∇f(x∗), x− x∗〉 ⩾ 0,

which below is extended to the notion of strong solution on X of a monotone
operator.

Definition 8.1.1. Let G : X → Rd and x∗ ∈ X .

(i) G is a monotone operator if:

∀x, x′ ∈ X ,
〈
G(x′)−G(x), x′ − x

〉
⩾ 0.

(ii) x∗ is a zero of G if G(x∗) = 0.

91
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(iii) x∗ is a strong solution of G on X if

∀x ∈ X , 〈G(x∗), x∗ − x〉 ⩽ 0.

(iv) x∗ is a weak solution of G on X if

∀x ∈ X , 〈G(x), x∗ − x〉 ⩽ 0.

Remark 8.1.2. An advantage of the concept of weak solution is that such a
solution always exist as soon as X is compact.
Remark 8.1.3. If x∗ is either a weak or a strong solution and belongs to the
interior of X , then it is a zero of the operator.

The following proposition proves that in the case of a continuous mono-
tone operator, both above solution concepts are equivalent.

Proposition 8.1.4. Let G : X → Rd a monotone operator and x∗ ∈ X .

(i) If x∗ is a strong solution of G on X , then it is a weak solution of G
on X .

(ii) If x∗ is a weak solution of G on X and G is continuous, then it is a
strong solution of G on X .

Proof. (i) If x∗ is a strong solution, for all x ∈ X ,

〈G(x), x∗ − x〉 ⩽ 〈G(x∗), x∗ − x〉 ⩽ 0,

where the first inequality holds by monotonicity of G.
(ii) Now assume that x∗ is a weak solution and that G is continuous.

Let us prove that x∗ is a strong solution. Let x ∈ X and for all λ ∈ (0, 1)
consider xλ = (1−λ)x∗+λx, which belongs to X by convexity of the latter.
Then because x∗ is a weak solution,

〈G(xλ), x∗ − xλ〉 ⩽ 0,

where x∗ − xλ rewrites as λ(x∗ − x). Then, dividing by λ gives

〈G(xλ), x∗ − x〉 ⩽ 0.

Taking the limit as λ → 0+ gives, by continuity of G,

〈G(x∗), x∗ − x〉 ⩽ 0.

x∗ is thus a strong solution.

Proposition 8.1.5. Let f : Rd → R be a differentiable convex function.
Then, ∇f : Rd → Rd is a monotone operator.
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Proof. Let x, x′ ∈ Rd. By convexity,

f(x′) ⩾ f(x) +
〈
∇f(x), x′ − x

〉
f(x) ⩾ f(x′) +

〈
∇f(x′), x− x′

〉
.

Summing the above two inequalities gives〈
∇f(x′)−∇f(x), x′ − x

〉
⩾ 0,

hence the result.

Definition 8.1.6. Let m,n ⩾ 1 be integers, g : Rm × Rn → R, A ⊂ Rm

and B ⊂ Rn nonempty sets. A couple (a∗, b∗) ∈ A × B is a saddle-point of
g on A× B if

a∗ ∈ Argmin
a∈A

g(a, b∗) and b∗ ∈ Argmax
b∈B

g(a∗, b).

If moreover A = Rm and B = Rn, the saddle-point is said to be global.

Proposition 8.1.7. Let m,n ⩾ 1 be integer, g : Rm × Rn → R such that

• for all b ∈ Rn, g( · , b) is convex and differentiable (denote ∇ag( · , b)
its gradient);

• for all a ∈ Rm, g(a, · ) is concave and differentiable (denote ∇bg(a, · )
its gradient).

Let G : Rm × Rn → Rm × Rn be defined as

G(a, b) = (∇ag(a, b),−∇bg(a, b)), a ∈ Rm, b ∈ Rn,

and A ⊂ Rm and B ⊂ Rn be nonempty closed convex sets.

(i) G is a monotone operator.

(ii) (a, b) ∈ A × B is a saddle-point of g on A × B if, and only if it is a
strong solution of G on A× B.

(iii) (a, b) ∈ Rm × Rn is a global saddle-point of g if, and only if, it is a
zero of G.

Example 8.1.8 (KKT operator). Let p ⩾ 1 be an integer, f : Rd →
R a differentiable convex function, A ∈ Rp×d and b ∈ Rp. Consider the
constrained optimization problem

minimize f(x)

subject to Ax = b.

Solving the above is equivalent to finding a saddle-point of the Lagrangian
L(x,w) = f(x) + w⊤(Ax − b), which in turn is equivalent to finding a zero
of the associated KKT operator:

F (x,w) =

(
∇f(x) +A⊤w

b−Ax

)
.
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Proposition 8.1.9. The Euclidean projection on a nonempty closed convex
subset of Rd is a monotone operator.

8.2 Bounded monotone operators
We consider bounded monotone operators, which is the natural extension
of Lipschitz convex optimization. The simplest algorithm for this problem
is the obvious extension of projected gradient descent, which is called the
(projected) forward step algorithm:

xt+1 = ΠX (xt − γtG(xt)) , t ⩾ 0.

For a class of UMD-based iterates that contains the above, Proposition 8.2.3
guarantees that an approximate weak solution can be obtained at speed
1/
√
T . Then, in the special case of AdaGrad-Norm step-sizes, Proposi-

tion 7.2.5 provides a guarantee that is adaptive to the bound on the opera-
tor.

Let G : X → Rd be a monotone operator.

Example 8.2.1 (Finite two-player zero-sum games). Let m,n ⩾ 1 be inte-
gers, and A ∈ Rm×n. The solutions of the corresponding two-player zero-
sum games are the solutions of the following constrained saddle-point prob-
lem:

max
a∈∆m

min
b∈∆n

〈a,Ab〉 .

The corresponding monotone operator G(a, b) = (−Ab,A⊤a) is bounded on
∆m ×∆n.

The following gives a connection between the search for an approximate
weak solution and regret minimization.

Lemma 8.2.2. Let (xt)t⩾0 be a sequence in X , (γt)t⩾0 a positive sequence,
T ⩾ 0, and

x̄
(γ)
T =

∑T
t=0 γtxt∑T
t=0 γt

.

Then for all x ∈ X ,

〈
G(x), x̄

(γ)
T − x

〉
⩽
(

T∑
t=0

γt

)−1 T∑
t=0

〈γtG(xt), xt − x〉 .

Proof. For all t ⩾ 0, the monotonicity of G gives

γt 〈G(x), xt − x〉 ⩽ γt 〈G(xt), xt − x〉 .

Summing and dividing by
∑T

t=0 γt gives the result.
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Proposition 8.2.3 (Strict UMD iterates with time-dependent step-sizes
and non-uniform averaging for variational inequalities with bounded mono-
tone operators). Let ‖ · ‖ be a norm on Rd, K,R > 0, and h a regularizer
on X . We assume that

• (xt, yt)t⩾0 is a sequence of strict UMD iterates associated with regular-
izer h and dual increments (−γtG(xt))t⩾0,

• h is K-strongly convex for ‖ · ‖,

• for all x ∈ X , ‖G(x)‖∗ ⩽ L.

(i) Let T ⩾ 0, x ∈ domh and x̄
(γ)
T =

(∑T
t=0 γt

)−1∑T
t=0 γtxt. Then,

∀x ∈ domh,
〈
G(x), x̄

(γ)
T − x

〉
⩽

Dh(x, x0; y0) +
L2

2K

∑T
t=0 γ

2
t∑T

t=0 γt
.

(ii) Let γ > 0. If γt = γ
√
2K/(L

√
t+ 1) for all t ⩾ 0, then〈

G(x), x̄
(γ)
T − x

〉
⩽ L√

2KT

(
Dh(x, x0; y0)

γ
+ γ(1 + log(T + 1))

)
.

(iii) If Dh(x, x0; y0) ⩽ R2, then γ = R yields,〈
G(x), x̄

(γ)
T − x

〉
⩽ RL√

2KT
(2 + log(T + 1)) .

Proof. Use above Lemma 8.2.2 and perform a similar analysis as for Lips-
chitz convex optimization (Proposition 6.1.2).

From the above general statement, we can of course derive corollaries for
OMD and DA. Analogously to Proposition 6.1.6, DA with time-dependent
parameters can be used instead to shave off the log T factor.

Proposition 8.2.4 (AdaGrad-Norm for bounded monotone operators). As-
sume that G is bounded by L with respect to ‖ · ‖2. Let x0 ∈ X , γ > 0,

xt+1 = ΠX

xt −
γ√∑t

s=0 ‖G(xs)‖22
G(xt)

 , t ⩾ 0.

(i) Let T ⩾ 0 and x ∈ X . Then,

〈G(x), x̄T − x〉 ⩽
(
max0⩽t⩽T ‖x− xt‖22

2γ
+ γ

)√
L

T + 1
,

where x̄T = 1
T+1

∑T
t=0 xt.
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(ii) Let R ⩾ max0⩽t⩽T ‖xt − x‖2, then γ = R/
√
2 yields

〈G(x), x̄T − x〉 ⩽ RL

√
2

T + 1
.

Proof. Combine above Lemma 8.2.2 with the regret bound for AdaGrad-
Norm (Proposition 7.2.3).

8.3 Lipschitz continuous monotone operators
We now consider Lipschitz continuous monotone operators, for which ap-
proximate weak solutions can be obtained at rate 1/T instead of 1/

√
T . An

important special case discussed below is two-player zero-sum games. The
simplest method with such a guarantee is the extragradient algorithm which
writes

wt = ΠX (xt − γG(xt)),

xt+1 = ΠX (xt − γG(wt)), t ⩾ 0,

where γ > 0 is a step-size. We present and analyze below a very general a
class of UMD-based iterates that extends extragradient.

Example 8.3.1 (Finite two-player zero-sum games). Let m,n ⩾ 1 be
integers, and A ∈ Rm×n. Corresponding monotone operator G(a, b) =
(−Ab,A⊤a) is Lipschitz continuous on ∆m ×∆n.

Let G : X → Rd be a monotone operator.

Definition 8.3.2. Let h a regularizer on X and γ > 0. A sequence
((xt, wt, yt, zt))t⩾0 in (Rd)4 is a sequence of UMP iterates associated with
regularizer h, operator G and step-size γ if ((xt, yt))t⩾0 is a sequence of strict
UMD iterates associated with regularizer h and dual iterates (−γG(wt))t⩾0

and for t ⩾ 0,

(i) zt ∈ ∂h(xt),

(ii) ∀x ∈ X , 〈zt − yt, x− xt〉 ⩾ 0,

(iii) wt = ∇h∗(zt − γG(xt)),

Proposition 8.3.3 (UMP iterates for variational inequalities with Lipschitz
continuous monotone operator). Let K,L > 0, ‖ · ‖ be a norm on Rd, h a
regularizer on X , ((xt, yt, wt, zt))t⩾0 a sequence of UMP iterates associated
with regularizer h, operator G and step-size K/L. We assume that

• h is K-strongly convex for ‖ · ‖,
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• G : X → Rd is L-Lipschitz continuous for the following norms:∥∥G(x′)−G(x)
∥∥
∗ ⩽ L

∥∥x′ − x
∥∥ , x, x′ ∈ X .

Then for all T ⩾ 0,

∀x ∈ domh, 〈G(x), w̄T − x〉 ⩽ L ·Dh(x, x0; y0)

K(T + 1)
,

where w̄T = 1
T+1

∑T
t=0wt.

Proof. Let x ∈ domh and T ⩾ 0. Lemma 8.2.2 gives:

K(T + 1)

L
〈G(x)|w̄T − x〉 ⩽

T∑
t=0

K

L
〈G(wt)|wt − x〉

=
T∑
t=0

(
K

L
〈G(wt)|xt+1 − x〉+ K

L
〈G(wt)|wt − xt+1〉

)

⩽ Dh(x, x0; y0) +
T∑
t=0

(
−Dh(xt+1, xt; yt) +

K

L
〈G(wt)|wt − xt+1〉

)
,

where the second inequality comes from applying Lemma 2.4.1 (because
(xt, yt)t⩾1 is a sequence of strict UMD iterates). We bound the above last
two terms as follows. Let t ⩾ 0 and denote δt the content of the above last
sum and let us bound it as follows.

δt = −Dh(xt+1, xt; yt)−
K

L
〈G(wt)|xt+1 − wt〉

= −h(xt+1) + h(xt) + 〈yt|xt+1 − xt〉+
K

L
〈(G(xt)−G(wt))|xt+1 − wt〉

− K

L
〈G(xt)|xt+1 − wt〉 .

(8.1)

Condition (ii) from the Definition 8.3.2:

〈yt|xt+1 − xt〉 ⩽ 〈zt|xt+1 − xt〉 . (8.2)

Besides, using basic inequality 〈y|x〉 ⩽ 1
2 ‖y‖

2
∗ +

1
2 ‖x‖

2, we can write:

K

L
〈(G(xt)−G(wt))|xt+1 − wt〉 ⩽

(K/L)2

2K
‖G(xt)−G(wt)‖2∗ +

K

2
‖xt+1 − wt‖2

⩽ (K/L)2L2

2K
‖xt − wt‖2 +

K

2
‖xt+1 − wt‖2 ,

(8.3)
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where we used the Lipschitz continuity of operator G. Injecting (8.2) and
(8.3) into (8.1) and simplifying gives

δt ⩽ −h(xt+1) + h(xt) + 〈zt|wt − xt〉+
〈
zt −

K

L
G(xt)

∣∣∣∣xt+1 − wt

〉
+

K

2
‖wt − xt‖2∗ +

K

2
‖xt+1 − wt‖2 . (8.4)

First, we have zt ∈ ∂h(xt) by condition (i) and Dh(wt, xt; zt) is well-defined.
Besides, thanks to Proposition 1.4.6, condition (iii) is equivalent to zt −
K
LG(xt) ∈ ∂h(wt), and Dh(xt+1, wt; zt − K

LG(xt)) is thus well-defined. We
can make those two generalized Bregman divergences appear in the above
right-hand side, which is consequently equal to:

δt ⩽
K

2
‖wt − xt‖2 −Dh(wt, xt; zt) +

K

2
‖xt+1 − wt‖2

−Dh

(
xt+1, wt; zt −

K

L
G(xt)

)
.

Using the K-strong convexity of h (Proposition 1.6.4), the above simplifies
to δt ⩽ 0. The result follows.

The above general statement contains as special cases the following well-
known algorithms.

Corollary 8.3.4 (Mirror-Prox). Let K,L > 0, ‖ · ‖ be a norm on Rd, H a
mirror map compatible with X , x0 ∈ X ∩ int domH and for t ⩾ 0,

wt = argmax
x∈X

{〈
∇H(xt)−

K

L
G(xt), x

〉
−H(x)

}
xt+1 = argmax

x∈X

{〈
∇H(xt)−

K

L
G(wt), x

〉
−H(x)

}
.

Assume that

• H is K-strongly convex for ‖ · ‖,

• G : X → Rd is L-Lipschitz continuous for the following norms:∥∥G(x′)−G(x)
∥∥
∗ ⩽ L

∥∥x′ − x
∥∥ , x, x′ ∈ X .

Then for all T ⩾ 0,

∀x ∈ X ∩ domH, 〈G(x), w̄T − x〉 ⩽ L ·DH(x, x0)

K(T + 1)
,

where w̄T = 1
T+1

∑T
t=0wt.
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Corollary 8.3.5 (Extragradient). Let L > 0, x0 ∈ X and for t ⩾ 0,

wt = ΠX

(
xt −

1

L
G(xt)

)
xt+1 = ΠX

(
xt −

1

L
G(wt)

)
.

Assume that G is L-Lipschitz continuous for ‖ · ‖2. Then, for all T ⩾ 0,

∀x ∈ X , 〈G(x), w̄T − x〉 ⩽ L ‖x− x0‖22
2(T + 1)

,

where w̄T = 1
T+1

∑T
t=0wt.

Proof. Apply Corollary 8.3.4 with the Euclidean mirror map.

Corollary 8.3.6 (Dual extrapolation). Under the assumptions of Corol-
lary 8.3.4, let h = H + IX , and for t ⩾ 0,

xt = ∇h∗

(
y0 −

K

L

t−1∑
s=0

G(ws)

)
,

wt = argmax
x∈X

{〈
∇H(xt)−

K

L
G(xt), x

〉
−H(x)

}
.

Then for all T ⩾ 0,

∀x ∈ domh, 〈G(x), w̄T − x〉 ⩽ L ·Dh(x, x0; y0)

K(T + 1)
,

where w̄T = 1
T+1

∑T
t=0wt.

8.4 Co-coercive operators and fixed point itera-
tions

We now consider co-coercivity, which is a stronger notion than monotonicity.
We establish the equivalence between being a zero of a co-coercive operator
and being a fixed point of a corresponding nonexpansive map (meaning 1-
Lipschitz continuous for the Euclidean norm). This subtopic is particularly
important as it covers the construction and analysis of many optimization al-
gorithms, such as the proximal gradient descent, ADMM, Douglas-Rachford
splitting, Chambolle-Pock, and many more.

We present in Lemma 8.4.8 a connection between the search for an ap-
proximate solution of a co-coercive operator and regret minimization. We
use this connection to recover in Proposition 8.4.9 the classical guarantee



Co-coercive operators and fixed point iterations 100

for the Krasnoselskii-Mann method, which is the workhorse fixed point it-
eration for nonexpansive maps. We further utilize this connection to define
an AdaGrad-Norm-based method for fixed points which comes in Proposi-
tion 8.4.10 with an adaptive guarantee.

Definition 8.4.1. Let L > 0. A map G : X → Rd is a L-co-coercive
operator if for all x, x′ ∈ X ,〈

G(x′)−G(x), x′ − x
〉
⩾ 1

L

∥∥G(x′)−G(x)
∥∥2
2
.

Definition 8.4.2. A map F : X → X is nonexpansive if it is 1-Lipschitz
continuous for ‖ · ‖2, in other words

∀x, x′ ∈ X ,
∥∥F (x′)− F (x)

∥∥
2
⩽
∥∥x′ − x

∥∥
2
.

Definition 8.4.3. Let F : X → X . x∗ is a fixed point of F if F (x∗) = x∗.

Proposition 8.4.4. Let F : X → X , x∗ ∈ X and L > 0. The following
statements are equivalent.

(i) x∗ is a fixed point of F ,

(ii) x∗ is a fixed point of 1
LF + (1− 1

L)I,

(iii) x∗ is a zero of I − F .

Proof. Immediate.

Proposition 8.4.5. Let L > 0. A map G : X → Rd is a L-co-coercive
operator if, and only if, I − 2

LG is nonexpansive.

Proof. For G : X → Rd, being L-co-coercive can be written, for all x, x′ ∈ X ,

1

L

∥∥G(x′)−G(x)
∥∥2
2
−
〈
G(x′)−G(x), x′ − x

〉
⩽ 0.

Multiplying by 4/L and adding ‖x− x′‖22, the above equivalently rewrites:
for all x, x′ ∈ X ,∥∥∥∥ 2LG(x′)− 2

L
G(x)

∥∥∥∥2
2

− 2

〈
2

L
G(x′)− 2

L
G(x), x′ − x

〉
+
∥∥x′ − x

∥∥2
2

⩽
∥∥x′ − x

∥∥2
2
,

which simplifies into∥∥∥∥( 2

L
G− I

)
(x′)−

(
2

L
G− I

)
(x)

∥∥∥∥2
2

⩽
∥∥x′ − x

∥∥2
2
,

in other words, I − 2
LG is nonexpansive.
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Corollary 8.4.6. Let L > 0 and F : X → X . Then, 1
LF + (1 − 1

L)I is
nonexpansive if, and only if 1

2(I − F ) is L-co-coercive.

Proof. Follows from Proposition 8.4.5.

Proposition 8.4.7. Let L > 0 and f : Rd → R a differentiable convex
function. Then, f is L-smooth if, and only if, ∇f is a L-co-coercive operator.

Proof. This characterization is part of Proposition 1.6.4.

The easiest fixed points problems are those with a contraction map
F : X → X (meaning L-Lipschitz continuous for ‖ · ‖2 with 0 ⩽ L < 1).
Banach’s fixed point theorem states that, from any initial point x0 ∈ X ,
iteration xt+1 = F (xt) ensures geometric convergence to the fixed point,
which is necessarily unique.

When the map is only nonexpansive, the above iteration does not ensure
convergence anymore. This motivates the Krasnoselskii-Mann iteration (see
Proposition 8.4.9 below) which is a damped version: the next iterate xt+1

is obtained by the convex combination of the image F (xt) with the current
iterate xt. Convergence to a fixed point is then ensured for e.g. constant
coefficients (for the convex combination), but there no more guarantees on
the distance to the fixed point. Instead, a vanishing bound on ‖F (xt)− xt‖
is obtained, which is a weaker guarantee but somehow still measures how
far xt is from being a fixed point.

Lemma 8.4.8. Let L > 0, F : X → X such that 1
LF + (1 − 1

L)I is nonex-
pansive, x∗ a fixed point of F , (xt)t⩾0 be a sequence in X , (γt)t⩾0 a positive
sequence, and T ⩾ 0. Then,

T∑
t=0

γt ‖F (xt)− xt‖22 ⩽ 2L
T∑
t=0

〈γt(F (xt)− xt), x∗ − xt〉 .

Proof. For t ⩾ 0, because 1
2(I − F ) is L-co-coercive by Corollary 8.4.6,

γt 〈F (xt)− xt, x∗ − xt〉 = 2γt

〈
F (xt)− xt

2
− F (x∗)− x∗

2
, x∗ − xt

〉
⩾ 2γt

L

∥∥∥∥F (xt)− xt
2

− F (x∗)− x∗
2

∥∥∥∥2
2

=
γt
2L

‖F (xt)− xt‖22 .

The result follows by summing the weighted average.

Proposition 8.4.9 (Krasnosleskii-Mann iterations). Let F : X → X be a
nonexpansive map, x∗ a fixed point of F , (γt)t⩾0 a sequence in (0, 1), x0 ∈ X
and for t ⩾ 0,

xt+1 = (1− γt)xt + γtF (xt).
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(i) (xt)t⩾0 is a sequence of OGD iterates on Rd associated with dual in-
crements (γt(F (xt)− xt))t⩾0.

(ii) Let T ⩾ 0. Then,

‖F (xT )− xT ‖2 ⩽
‖x0 − x∗‖2√∑T
t=0 γt(1− γt)

.

(iii) In particular, if γt = 1/2 for all t ⩾ 0,

‖F (xT )− xT ‖2 ⩽
2 ‖x0 − x∗‖2√

T + 1
.

Proof. For t ⩾ 0, the definition of the iterates rewrites

xt+1 = xt + γt(F (xt)− xt),

which gives (i).
Combining the regret bound for OGD (Corollary 3.3.16) with Lemma 8.4.8

gives
T∑
t=0

γt ‖F (xt)− xt‖22 ⩽ ‖x0 − x∗‖22 − ‖xT+1 − x∗‖22 +
T∑
t=0

γ2t ‖F (xt)− xt‖22 .

Getting rid of term ‖xT+1 − x∗‖22 and rearranging gives

T∑
t=0

γt(1− γt) ‖F (xt)− xt‖22 ⩽ ‖x0 − x∗‖22 .

The result follows as soon as (‖F (xt)− xt‖22)t⩾0 is nonincreasing, which we
now prove. Let t ⩾ 0. Note that by definition of the iterates, F (xt)−xt+1 =
(1− γt)(F (xt)− xt). Then,

‖F (xt+1)− xt+1‖2 = ‖F (xt+1)− F (xt) + F (xt)− xt+1‖2
⩽ ‖F (xt+1)− F (xt)‖2 + ‖F (xt)− xt+1‖2
⩽ ‖xt+1 − xt‖2 + (1− γt) ‖F (xt)− xt‖2
= γt ‖F (xt)− xt‖2 + (1− γt) ‖F (xt)− xt‖2 ,

where we used the nonexpansiveness of F for the second inequality. Hence
(ii) and (iii) follows.

We now transpose the AdaGrad-Norm algorithm to the problem of find-
ing a fixed point of a map F , which may not be nonexpansive, but such
that 1

LF + (1− 1
L)I is nonexpansive, for some L > 0. The adaptive charac-

ter of AdaGrad allows to be adaptive to such a coefficient L, without prior
knowledge.
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Proposition 8.4.10 (AdaGrad-Norm for fixed points). Let L,R > 0, F :
X → X such that 1

LF + (1 − 1
L)I is nonexpansive, x∗ a fixed point of F ,

x0 ∈ X such that F (x0) 6= x0, γ > 0 and for t ⩾ 0,

xt+1 = xt +
γ√∑T

t=0 ‖F (xt)− xt‖22
(F (xt)− xt).

Let T ⩾ 0.

(i) Then,

min
0⩽t⩽T

‖F (xt)− xt‖2 ⩽
(
max0⩽t⩽T ‖xt − x∗‖22

2γ
+ γ

)
2L√
T
.

(ii) If R ⩾ max0⩽t⩽T ‖xt − x∗‖2, then γ = R/
√
2 yields

min
0⩽t⩽T

‖F (xt)− xt‖2 ⩽
2
√
2RL√
T

.

Proof. Combining Lemma 8.4.8 with the regret bound for AdaGrad-Norm
(Proposition 7.2.3) gives

T∑
t=0

‖F (xt)− xt‖22 ⩽ 2L

(
max0⩽t⩽T ‖xt − x∗‖22

2γ
+ γ

)√√√√ T∑
t=0

‖F (xt)− xt‖22.

Dividing by
√∑T

t=0 ‖F (xt)− xt‖22 gives√√√√ T∑
t=0

‖F (xt)− xt‖22 ⩽ 2L

(
max0⩽t⩽T ‖xt − x∗‖22

2γ
+ γ

)
.

The result follows.



Chapter 9

Regret learning in games

For d ⩾ 1, recall that the simplex in Rd is defined as

∆d =

{
x ∈ Rd

+,
d∑

i=1

xi = 1

}
,

which represents the set of probability distributions over the set {1, . . . , d}.

9.1 Normal-form games
We quickly recall basic definitions about finite normal-form games.

Definition 9.1.1. A finite (normal-form) game is given by

• a finite number of players N ⩾ 1,

• and for each player 1 ⩽ k ⩽ N ,

– a set of S(k) of pure strategies,
– a payoff function g(k) :

∏N
k′=1 S(k′) → R

The interpretation is the following. Each player 1 ⩽ k ⩽ N chooses
a strategy s(k) ∈ S(k), independently of the other players, and gets payoff
g(k)(s(1), . . . , s(N)). Each player aims at maximizing his payoff.

Let such a game be given.

Definition 9.1.2. A N -tuple (s(1), . . . , s(N)) ∈ S(1) × · · · × S(N) is a Nash
equilibrium in pure strategies if for all 1 ⩽ k ⩽ N ,

s(k) ∈ Argmax
s̃(k)∈S(k)

g(k)(s(1), . . . , s(k−1), s̃(k), s(k+1), . . . , s(N)).

Example 9.1.3 (Penalty game). A goalkeeper (Player 1) plays against the
shooter (Player 2). Each player chooses left or right. The goalkeeper (resp.

104
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the shooter) wins (resp. looses) if their choices match. K = 2, S(1) = S(2) =
{L,R}, and

g(1)(s(1), s(2)) = −g(2)(s(1), s(2)) =

{
1 if s(1) = s(2)

−1 otherwise.

The game has no Nash equilibrium in pure strategies.
Definition 9.1.4. Let 1 ⩽ k ⩽ N . A mixed strategy for Player k, is a
probability distribution a(k) ∈ ∆(S(k)) over S(k), where ∆(S(k)) is the unit
simplex in RS(k) .
Definition 9.1.5. The mixed extension of the game from Definition 9.1.1 is
the game with sets of strategies ∆(S(k)) (1 ⩽ k ⩽ N) and payoff functions
given for 1 ⩽ k ⩽ N and a(1) ∈ ∆(S(1)), . . . , a(N) ∈ ∆(S(N)) by

g(k)(a(1), . . . , a(N)) =
∑

s(1)∈S(1)

...
s(N)∈S(N)

(
N∏

k′=1

a
(k′)

s(k
′)

)
g(k)(s(1), . . . , s(N)).

Interpretation of the mixed extension is as follows. Each player 1 ⩽
k ⩽ N independently chooses a mixed action a(k) ∈ ∆(S(k)) and draws a
pure action s(k) ∼ a(k). We then consider the expectation of each payoff
g(k)(s(1), . . . , s(N)) (1 ⩽ k ⩽ N).
Definition 9.1.6. A N -tuple (a(1), . . . , a(N)) ∈ ∆(S(1)) × · · · ×∆(S(N)) is
a Nash equilibrium in mixed strategies if for all 1 ⩽ k ⩽ N ,

a(k) ∈ Argmax
ã(k)∈∆(S(k))

gk(a
(1), . . . , a(k−1), ã(k), a(k+1), . . . , a(N)).

Theorem 9.1.7 (Nash, 1951). A finite game admits a Nash equilibrium in
mixed strategies.
Example 9.1.8 (Penalty game). In the penalty game, each player choosing
left or right with probability 1/2 is a Nash equilibrium.

9.2 Two-player zero-sum games
Let m,n ⩾ 1 be integers. We focus on zero-sum two-player games which
can be represented by a matrix A ∈ Rm×n. Denote S(1) = {1, . . . ,m}
(resp. S(2) = {1, . . . , n}) the set of pure strategies of Player 1 (resp. Player
2). When Player 2 and Player 2 choose strategies i ∈ {1, . . . ,m} and j ∈
{1, . . . , n} respectively, Player 1 (resp. Player 2) obtains payoff Aij (resp.
−Aji). For mixed strategies a ∈ ∆m and b ∈ ∆n, if i ∼ a and j ∼ b,

E [Aij ] =
m∑
i=1

n∑
j=1

aibjAij = 〈a,Ab〉 .
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Remark 9.2.1. (a∗, b∗) ∈ ∆m×∆n is a Nash equilibrium in mixed strategies
if, and only if,

a∗ ∈ Argmax
a∈∆m

〈a,Ab∗〉 and b∗ ∈ Argmin
b∈∆n

〈a∗, Ab〉 .

Definition 9.2.2. The duality gap δA : ∆m ×∆n → R+ is defined as

δA(a, b) = max
a′∈∆m

〈
a′, Ab

〉
− min

b′∈∆n

〈
a,Ab′

〉
, a ∈ ∆m, b ∈ ∆n.

Proposition 9.2.3. (a∗, b∗) ∈ ∆m ×∆n is a Nash equilibrium of the two-
player zero-sum game associated with A if, and only if, δA(a∗, b∗) = 0.

Proof. It always holds that

max
a∈∆m

〈a,Ab∗〉 ⩾ 〈a∗, Ab∗〉 ⩾ min
b∈∆n

〈a∗, Ab〉 .

Therefore, δA(a∗, b∗) = 0 if, and only, if the above inequalities are equalities.
The above first inequality being an equality is equivalent to

a∗ ∈ Argmax
a∈∆m

〈a,Ab∗〉 ,

and similarly the second inequality being an equality is equivalent to

b∗ ∈ Argmin
b∈∆n

〈a∗, Ab〉 .

Hence the result.

Remark 9.2.4. The duality gap is easy to compute, as it rewrites

δA(a, b) = max
1⩽i⩽m

(Ab)i − min
1⩽j⩽n

(A⊤a)j , a ∈ ∆m, b ∈ ∆n.

It is therefore the quantity of choice to measure how far a couple (a, b) is
from being a Nash equilibrium.

Theorem 9.2.5 (Von Neumann’s minimax theorem). There exists a Nash
equilibrium (a∗, b∗) ∈ ∆m ×∆n of the two-player zero-sum game associated
with A and

〈a∗, Ab∗〉 = max
a∈∆m

min
b∈∆n

〈a,Ab〉 = min
b∈∆n

max
a∈∆m

〈a,Ab〉 .

There are several proofs of von Neumann’s theorem. In the next section,
we give one based on regret minimization.
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9.3 Regret learning
The following statement demonstrates that the duality gap can be minimized
if the game is played repeatedly, with each player minimizing its regret.
Lemma 9.3.1. Let T ⩾ 0, a0, . . . , aT ∈ ∆m, b0, . . . , bT ∈ ∆n, āT =
1

T+1

∑T
t=0 at and b̄T = 1

T+1

∑T
t=0 bt. Then,

δT
(
āT , b̄T

)
=

1

T + 1

(
max
a∈∆m

T∑
t=0

〈Abt, a− at〉+ max
b∈∆n

T∑
t=0

〈
−A⊤at, b− bt

〉)
.

Proof.

δT
(
āT , b̄T

)
= max

a∈∆m

〈
a,A

(
1

T + 1

T∑
t=0

bt

)〉
− min

b∈∆n

〈
1

T + 1

T∑
t=0

at, Ab

〉

=
1

T + 1

(
max
a∈∆m

T∑
t=0

〈a,Abt〉 − max
b∈∆n

T∑
t=0

〈
−A⊤at, b

〉)

=
1

T + 1

(
max
a∈∆m

T∑
t=0

〈a,Abt〉 −
T∑
t=0

〈at, Abt〉+
T∑
t=0

〈
A⊤at, bt

〉
+max

b∈∆n

T∑
t=0

〈
−A⊤at, b

〉)
,

hence the result.

The following proposition uses the exponential weights algorithm to min-
imize each of the two regrets appearing the the above lemma. The guarantee
on the duality gap is then an immediate adaptation from the regret bound
for the exponential weights algorithm (Proposition 3.4.4).
Proposition 9.3.2 (Exponential weights for two-player zero-sum games).
For t ⩾ 0, let

yt = ηt

t−1∑
s=0

Abs, zt = −η′t

t−1∑
s=0

A⊤as,

where
ηt =

√
2 logm

‖A‖∞
√
t+ 1

, η′t =

√
2 log n

‖A‖∞
√
t+ 1

,

and

at =

(
exp (yt,i)∑m

i′=1 exp
(
yt,i′
))

1⩽i⩽m

, bt =

(
exp (zt,j)∑n

j′=1 exp
(
zt,j′

))
1⩽j⩽n

,

For T ⩾ 0, let āT = 1
T+1

∑T
t=0 at and b̄T = 1

T+1

∑T
t=0 bt. Then,

δA
(
āT , b̄T

)
⩽ ‖A‖∞

(√
logm+

√
log n

)√ 2

T + 1
.



Regret learning 108

Proof. For all t ⩾ 0, ‖Abt‖∞ ⩽ ‖A‖∞ ‖bt‖1 = ‖A‖∞ because bt ∈ ∆n.
Similarly,

∥∥A⊤at
∥∥
∞ ⩽ ‖A‖∞. Therefore, similarly to Proposition 3.4.4, we

obtain regret bounds

max
a∈∆m

T∑
t=0

〈Abt, a− at〉 ⩽ ‖A‖∞
√

2(logm)(T + 1)

max
b∈∆n

T∑
t=0

〈
−A⊤at, b− bt

〉
⩽ ‖A‖∞

√
2(log n)(T + 1).

Summing and applying Lemma 9.3.1 gives the result.

We can use the above result to now prove von Neumann’s minmax the-
orem.

Proof of Theorem 9.2.5. Let us first prove that δA is continuous on ∆m×∆n.

(a, b) 7→ max
a′∈∆m

〈
a′, Ab

〉
= max

a′∈∆m

〈
A⊤a′, b

〉
,

is defined on Rm × Rn and is convex as the point-wise maximum of linear
functions. It is therefore continuous. Similarly, (a, b) 7→ maxb∈∆n 〈a,Ab′〉 is
continuous. Hence, δA is continuous.

For all T ⩾ 0, let āT ∈ ∆m and b̄T ∈ ∆n from Proposition 9.3.2. Because
they belong to simplexes which are compact sets, there exists subsequences
so that they converge to a∗ ∈ ∆m and b∗ ∈ ∆n respectively. Because
the bound from Proposition 9.3.2 is vanishing as T → ∞, by continuity
of δA, δA(a∗, b∗) = 0, in other words, (a∗, b∗) is a Nash equilibrium by
Proposition 9.2.3.

Moreover, for all (a, b) ∈ ∆m ×∆n, in addition to

max
a′∈∆m

〈
a′, Ab

〉
⩾ 〈a,Ab〉 ⩾ min

b′∈∆n

〈
a,Ab′

〉
,

it is elementary to prove that

max
a′

〈
a′, Ab

〉
⩾ min

b′∈∆n

max
a′∈∆m

〈
a′, Ab′

〉
⩾ max

a′∈∆m

min
b′∈∆n

〈
a′, Ab′

〉
⩾ min

b′∈∆n

〈
a,Ab′

〉
.

For a = a∗ anb b = b∗ in particular, because δA(a∗, b∗) = 0, the left-most
and right-most quantities of both above displays are equal. Therefore, all
inequalities are equalities and

〈a∗, Ab∗〉 = min
b′∈∆n

max
a′∈∆m

〈
a′, Ab′

〉
= max

a′∈∆m

min
b′∈∆n

〈
a′, Ab′

〉
.
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Proposition 9.3.3 (RM for two-player zero-sum games). Let a0 ∈ ∆m and
b0 ∈ ∆n. For t ⩾ 0, let

at =


xt,+

‖xt,+‖1
if xt,+ :=

(
t−1∑
s=0

(Abs − 〈as, Abs〉1)

)
+

6= 0

a0 otherwise,

bt =


wt,+

‖wt,+‖1
if wt,+ :=

(
t−1∑
s=0

(
〈as, Abs〉1−A⊤as

))
+

6= 0

b0 otherwise.

For all T ⩾ 0, let āT = 1
T+1

∑T
t=0 at and b̄T = 1

T+1

∑T
t=0 bt. Then,

δA
(
āT , b̄T

)
⩽ (Amax −Amin)

√
m+

√
n√

T + 1
.

Proof. The general regret bound for RM from Proposition 5.5.3 gives

max
a∈∆m

T∑
t=0

〈Abt, a− at〉 ⩽

√√√√ T∑
t=0

‖Abt − 〈at, Abt〉1‖22

max
b∈∆n

T∑
t=0

〈
−A⊤at, b− bt

〉
⩽

√√√√ T∑
t=0

‖〈at, Abt〉1−A⊤at‖22

For all t ⩾ 0, because at ∈ ∆m and bt ∈ ∆n,

‖Abt − 〈at, Abt〉1‖22 =
m∑
i=1

((Abt)i − 〈at, Abt〉)2

⩽
m∑
i=1

(Amax −Amin)
2

= m (Amax −Amin)
2 ,

and similarly ∥∥∥〈at, Abt〉1−A⊤at

∥∥∥2
2
⩽ n (Amax −Amin)

2 .

The result then follows by applying Lemma 9.3.1.

Proposition 9.3.4 (RM+ for two-player zero-sum games). Let a0 ∈ ∆m,
b0 ∈ ∆n, x0 = 0, w0 = 0. For t ⩾ 0, let

at =


xt

‖xt‖1
if xt 6= 0

a0 otherwise,
bt =


wt

‖wt‖1
if wt 6= 0

b0 otherwise.

xt+1 = (xt +Abt − 〈at, Abt〉1)+ wt+1 = (wt + 〈at, Abt〉1−A⊤at)+.

Then, the same guarantee as for RM (Proposition 9.3.3) holds.



Optimistic regret learning 110

Proof. Identical to Proposition 9.3.3.

9.4 Optimistic regret learning
Section 8.3 provided an approach for solving a class of problems containing
two-player zero-sum games with fast convergence rate 1/T . We here provide
an alternative approach to obtain such a rate.

Informally, an optimistic variant of a regret minimization algorithm uses
the last observed vector twice, the second time as a guess for the next
vector. For instance, an optimistic exponential weights algorithm against
(ut)t⩾0 would write

xt =

 exp
(
η
∑t−1

s=0 us,i + ut−1,i

)
∑d

i′=1 exp
(
η
∑t−1

s=0 us,i′ + ut−1,i′

)


1⩽i⩽d

t ⩾ 0.

Lemma 9.4.1 (Optimistic UMD). Let ‖ · ‖ be a norm on Rd, K > 0, X be a
nonempty closed convex set, h a regularizer on X which is K-strongly convex
for ‖ · ‖, (ut)t⩾0 a sequence in Rd, and ((xt, yt))t⩾0 be a sequence of strict
UMD iterates associated with regularizer h and dual iterates (2ut−ut−1)t⩾0

(with convention u−1 = 0). Then for all T ⩾ 0, α > 0, and x ∈ domh,

T∑
t=0

〈ut, x− xt〉 ⩽ Dh(x, x0; y0) +
α

2
‖x− xT ‖2 +

1

2α
‖u0‖2∗

+
1

2α

T−1∑
t=0

‖ut+1 − ut‖2∗ +
(
α

2
− K

2

) T−1∑
t=0

‖xt+1 − xt‖2 .

Proof.

T∑
t=0

〈ut, x− xt〉 = 〈u0, x− x0〉+
T−1∑
t=0

〈ut+1 − 2ut + ut−1, x− xt+1〉

+

T−1∑
t=0

〈2ut − ut−1, x− xt−1〉 .

(9.1)

The above last sum can be bounded from above using Lemma 2.4.1 and the
strong convexity of h:

T−1∑
t=0

〈2ut − ut−1, x− xt+1〉 ⩽ Dh(x, x0; y0)−
T−1∑
t=0

Dh(xt+1, xt; yt)

⩽ Dh(x, x0; y0)−
K

2

T−1∑
t=0

‖xt+1 − xt‖2 .

(9.2)
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The other sum is bounded as follows.
T−1∑
t=0

〈ut+1 − 2ut + ut−1, x− xt+1〉 =
T−1∑
t=0

〈ut+1 − ut, x− xt+1〉

−
T−1∑
t=0

〈ut − ut−1, x− xt+1〉

=
T−1∑
t=0

〈ut+1 − ut, x− xt+1〉 −
T−2∑
t=0

〈ut+1 − ut, x− xt+2〉 − 〈u0, x− x1〉

=

T−2∑
t=0

〈ut+1 − ut, xt+2 − xt+1〉+ 〈uT − uT−1, x− xT 〉 − 〈u0, x− x1〉

⩽
T−2∑
t=0

(
α

2
‖xt+2 − xt+1‖2 +

1

2α
‖ut+1 − ut‖2∗

)
+

1

2α
‖uT − uT−1‖2∗ +

α

2
‖x− xT ‖2 − 〈u0, x− x1〉 .

(9.3)

Combining (9.1), (9.2) and (9.3) gives

T∑
t=0

〈ut, x− xt〉 ⩽ Dh(x, x0; y0) + 〈u0, x1 − x0〉+
α

2

T−2∑
t=0

‖xt+2 − xt+1‖2

− K

2

T−1∑
t=0

‖xt+1 − xt‖2 +
α

2
‖x− xT ‖2

+
1

2α

T−1∑
t=0

‖ut+1 − ut‖2∗ .

Regarding the second term in the above upper bound, we write

〈u0, x1 − x0〉 ⩽
1

2α
‖u0‖2∗ +

α

2
‖x1 − x0‖2 .

The result follows.

Proposition 9.4.2 (Optimistic exponential weights for two-player zero-sum
games). Let η > 0 and for t ⩾ 0, let

yt = η

(
t−1∑
s=0

Abs +Abt−1

)
, zt = −η

(
t−1∑
s=0

A⊤as +A⊤at−1

)
,

and

at =

(
exp (yt,i)∑m

i′=1 exp
(
yt,i′
))

1⩽i⩽m

, bt =

(
exp (zt,j)∑m

j′=1 exp
(
zt,j′

))
1⩽j⩽n

.
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(i) (at)t⩾0 (resp. (bt)t⩾0) corresponds to the exponential weights algorithm
associated with dual increments (η(2Abt−Abt−1))t⩾0 (resp. (η(2A⊤at−
A⊤at−1))t⩾0) (with convention b−1 = 0 and a−1 = 0).

(ii) For T ⩾ 0, let āT = 1
T+1

∑T
t=0 at and b̄T = 1

T+1

∑T
t=0 bt. Then, if

η = 1/(2 ‖A‖∞),

δA
(
āT , b̄T

)
⩽ 2 ‖A‖∞ (logm+ log n+ 2)

T + 1
.

Proof. It is easy to verify that for all t ⩾ 0, yt = η
∑t−1

s=0(2Abt − Abt−1).
Similarly zt = −η

∑t−1
s=0(2A

⊤at −A⊤at−1). Hence (i) holds.
Because y0 = 0, if h is the entropic regularizer on ∆m,

Dh(a, a0; y0) = h(a)− h(a0) ⩽ logm,

by Proposition 3.4.3. Similarly, if h̃ is the entropic regularizer on ∆n, because
z0 = 0,

Dh̃(b, b0; z0) ⩽ log n.

Then, because the entropic regularizer is 1-strongly convex for ‖ · ‖1 by
Proposition 2.2.6, applying Lemma 9.4.1 gives regret bounds

η
T∑
t=0

〈Abt, a− at〉 ⩽ logm+
1

4
‖a− aT ‖21 + ‖2ηAb0‖2∞

+ η2
T−1∑
t=0

‖Abt+1 −Abt‖2∞ − 1

4

T−1∑
t=0

‖at+1 − at‖21 ,

η
T∑
t=0

〈
−A⊤at, b− bt

〉
⩽ log n+

1

4
‖b− bT ‖21 +

∥∥∥2ηA⊤a0

∥∥∥2
∞

+ η2
T−1∑
t=0

∥∥∥A⊤at+1 −A⊤at

∥∥∥2
∞

− 1

4

T−1∑
t=0

‖bt+1 − bt‖21 .

Note that for all t ⩾ 0,

‖Abt+1 −Abt‖2∞ ⩽ ‖A‖2∞ ‖bt+1 − bt‖21 ,∥∥∥A⊤at+1 −A⊤at

∥∥∥2
∞

⩽ ‖A‖2∞ ‖at+1 − at‖21 .

Besides,
‖2Ab0‖2∞ ⩽ 4 ‖A‖2∞ ‖b0‖21 = 4 ‖A‖2∞ ,

similarly
∥∥2A⊤a0

∥∥2
∞ ⩽ 4 ‖A‖2∞, and

‖a− aT ‖21 ⩽ (‖a‖1 + ‖aT ‖1)
2 = 4,
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and similarly ‖b− bT ‖21 ⩽ 4.
Dividing by η, summing, an applying Lemma 9.3.1 with α = 1/2 gives

(T + 1) · δA
(
āT , b̄T

)
⩽ logm+ log n+ 2

η
+ 8η ‖A‖2∞

+

(
η ‖A‖2∞ − 1

4η

) T−1∑
t=0

(
‖at+1 − at‖21 + ‖bt+1 − bt‖21

)
.

Because η = 1/(2 ‖A‖∞), the above last term is zero and the result follows.
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