
An Introduction to
Reinforcement Learning

From theory to algorithms

Joon Kwon

January 16, 2024

Contents

1 Markov decision processes 4
1.1 Formal definition . 5
1.2 Policies . 5
1.3 Induced probability distributions over histories 6
1.4 Value functions . 8

2 Bellman operators & optimality 10
2.1 Bellman operators . 10
2.2 Bellman equations . 13
2.3 Greedy policies . 16
2.4 Optimal value functions & policies 17

3 Dynamic programming 20
3.1 Value iteration . 20
3.2 Policy iteration . 22
3.3 Asynchronous fixed point iterations 24
3.4 Asynchronous value iterations 26

4 Tabular reinforcement learning 28
4.1 Stochastic asynchronous fixed point iterations 28
4.2 Stochastic estimators of Bellman operators 29
4.3 Policy evaluation . 33
4.4 Q-learning . 35
4.5 Policy iteration . 37

5 Value function approximation 39
5.1 Projected Bellman equations 39
5.2 Linear parametrization . 41
5.3 Semi-gradient algorithms . 44

6 Policy gradient methods 48
6.1 Policy parametrization . 48
6.2 REINFORCE . 50
6.3 An actor-critic algorithm . 51

1

Foreword

As of Winter 2023, this document contains lecture notes from a course given
in Master 2 in Université Paris–Saclay. These are highly incomplete and
constantly updated as the lectures are given.

Acknowledgements
These notes highly benefited from discussions with Sylvain Sorin, Erwan Le
Pennec, the expertise of Jaouad Mourtada, and the encouragements from
Liliane Bel.

2

Introduction

Reinforcement learning deals with problems where an agent sequentially
interacts with a dynamic environement, which yields a sequence of rewards.
We aim at finding the decision rule for the agent which yields the highest
cumulative reward. We first study the case where characteristics of the
environements are known, and then turn to techniques for dealing with
unknown environements, which must then be progressively learnt through
repeated interaction.

Reinforcement learning achives great success in various applications:
super-human algorithm for Go, robotics, finance, protein structure predic-
tion, to name a few. Because it is so sucessful in practice, many resources
are practice-oriented.

In these lectures, we first aim at a very rigorous presentation of the
basic notions and tools. These building blocks will then be used to define
algorithms, and establish theoretical guarantees for some of them.

3

Chapter 1

Markov decision processes

The framework for reinforcement learning is the Markov Decision process,
which is a repeated interaction between an agent and a dynamic environ-
ment, which can be informally described as follows.

We are given three finite nonempty sets S, A and R ⊂ R. The environ-
ment chooses an initial state S0 ∈ S and reveals it to the agent. The agent
then chooses an action A0 ∈ A, possibly at random. The environment then
draws (R1, S1) ∈ R×S according to a probability distribution that depends
on S0 and A0. The reward R1 and the new state S1 are revealed to the
agent. The agent then chooses A2 ∈ A, possibly at random. The environ-
ment then draws (R2, S2) ∈ R × S according to a probability distribution
which depends on S0 and A0, and so on.

The total reward of the agent
∑+∞

t=1 γ
t−1Rt, where 0 < γ < 1 is a given

discount factor. The goal is to find the decision rule for the agent that yields
the highest expected total reward.

Note that at stage t ⩾ 1, the choice of actions At by the agent may de-
pend on all previously observed information, meaning (S0, A0, R1, . . . , Rt, St).

Depending on the problem, the dynamics of the environment (which
maps a state-action pair to a probability distribution over reward-state
pairs) may be known or not.

This chapter presents basic notions regarding MDPs, in a formal fashion.
For a finite set I, we denote ∆(I) the corresponding unit simplex in RI :

∆(I) =

{
x ∈ RI

+,
∑
i∈I

xi = 1

}

and interpret it as set the probability distributions over I. For i ∈ I, the
corresponding Dirac measure is denoted δi.

4

Formal definition 5

1.1 Formal definition
Definition 1.1.1. A finite Markov Decision Process (MDP) is a 4-tuple
(S,A,R, p) where S,A,R are nonempty finite sets and p : S×A×S×R →
[0, 1] is such that for all s, a ∈ S ×A,∑

(r,s′)∈R×S

p(s, a, r, s′) = 1.

The elements of S, A and S are respectively called states, actions and re-
wards. The following notation will be used:

p(r, s′|s, a) = p(s, a, r, s′), (s, a, r, s′) ∈ S ×A×R× S.

The knowledge of S and A is always assumed, but R and p may not be
known, depending on the context.

From now on, we assume that a finite MDP is given.
Remark 1.1.2. For fixed values (s, a) ∈ S×A, p(s, a, ·) defines a probability
distribution on R× S, which justifies notation p(· |s, a).

Definition 1.1.3. Let t ⩾ 1. A history of length t is a finite sequence of
the form

(s0, a0, r1, s1, a1, r2, s2, a2, . . . , st−1, at−1, rt, st) ∈ (S ×A×R)t × S.

By convention, a history of length 0 is an element s0 ∈ S. H(t) denotes
the set of histories of length t and H∞ = (S × A × R)N the set of infinite
histories.

Remark 1.1.4. Histories of length t correspond to the information observed
by the agent at step t before choosing its action.

1.2 Policies
We now define policies, which are the formalization of decision rules for the
agent. We first consider general policies, which allow for random decisions,
as well as decision rules that depend on all available information (from the
beginning of the interaction to the present state).

Definition 1.2.1. A policy is a sequence of maps π = (πt)t⩾0 where πt :
H(t) → ∆(A). For each t ⩾ 0 and h(t) ∈ H(t), denote

πt(a|h(t)) := πt(h
(t))a.

Π denotes the set of all policies.

Definition 1.2.2. A policy π = (πt)t⩾0 is

Induced probability distributions over histories 6

• deterministic if for each t ⩾ 0 and h(t) ∈ H(t), there exists a ∈ A such
that πt(h

(t)) is the Dirac distribution in a;

• Markovian if for each t ⩾ 0, πt is constant in all its variables but
the last: in other words for a fixed value st ∈ S, the map πt(· , st) is
constant; πt can then be represented as πt : S → ∆(A);

• stationary if it is Markovian and if for all t ⩾ 0, πt = π0; π can
then be represented as π : S → ∆(A) and denoted π(a|s) = π(s)a for
(s, a) ∈ S ×A.

Denote Π0 (resp. Π0,d) the set of stationary policies (resp. stationary and
deterministic policies). A stationary and deterministic policy can be repre-
sented as π : S → A.

In the next chapter, we will establish that there exists a stationary and
deterministic optimal policy, and focus on stationary policies. We will how-
ever continue working with non-deterministic strategies, as they will later
prove handy for exploring an unknown environment.

1.3 Induced probability distributions over histo-
ries

As soon as an MDP, a policy π, and an initial state distribution µ are given,
the interaction produces random variables S0, A0, R1, S1, A0, R2, This
is formalized by the proposition below.

We first introduce the following notation. For T ⩾ 0 and h(T) =
(s0, a0, r1, . . . rT , sT), we consider the following associated subset of H∞:

Cylh(T) = {s0} × {a0} × {r1} × · · · × {rT } × {sT } × (A×R× S)N.

Proposition 1.3.1. Let µ ∈ ∆(S) and a policy π. There exists a unique
probability measure Pµ,π on H∞ = (S ×A×R)N (equipped with the product
σ-algebra) such that for all T ⩾ 0, and all h(T) = (s0, a0, r1, . . . , rT , sT) ∈
H(T),

Pµ,π

(
Cylh(T)

)
= µ(s0)

T−1∏
t=0

πt(at|h(t))p(rt+1, st+1|st, at).

where for each 0 ⩽ t ⩽ T , h(t) = (s0, a0, r1, . . . , st−1, at−1, rt, st).

Sketch of proof. The above expression defines a value for each set of the form
Cylh(T) for T ⩾ 0 and h(T) ∈ H(T). The map Pµ,π can then be extended to
so-called cylinder sets of the form

T∏
t=0

(St ×At ×Rt+1)× ST+1 × (A×R× S)N,

Induced probability distributions over histories 7

where S0, . . . ,ST+1 ⊂ S, A0, . . . ,AT ⊂ A and R1, . . . ,RT+1 ⊂ R by sum-
ming as follows:

Pµ,π

(
T∏
t=0

(St ×At ×Rt+1)× ST+1 × (A×R× S)N
)

=
∑
s0∈S0

...
sT+1∈ST+1

∑
a0∈A0

...
aT∈AT

∑
r1∈R1

...
rT+1∈RT+1

µ(s0)

T∏
t=0

πt(at|h(t))p(st+1, rt+1|st, at).

Pµ,π can then be seen to satisfy the assumptions of Kolmogorov’s extension
theorem which assures that Pµ,π can be extended to a unique probability
measure on H∞.

Definition 1.3.2. Let µ ∈ ∆(S), π ∈ Π, s ∈ S and a ∈ A.

(i) Pµ,π is called the probability distribution over histories induced by ini-
tial state distribution µ and policy π.

(ii) We write Ps,π instead of Pδs,π, which is called the probability distribu-
tion over histories induced by initial state s and policy π.

(iii) Let π′ = (π′
t)t⩾0 defined as

π′
0(s) = δa,

π′
0(s

′) = π0(s
′) for s′ 6= s

π′
t = πt for t ⩾ 1.

Ps,π′ is then called the probability distribution induced by initial state
s, initial action a, and policy π, and is denoted Ps,a,π.

The following shorthands will be used:

Eµ,π [·] = E(S0,A0,R1,...)∼Pµ,π
[·]

Es,π [·] = E(S0,A0,R1,...)∼Ps,π
[·]

Es,a,π [·] = E(S0,A0,R1,...)∼Ps,a,π
[·] .

Ps,a,π corresponds to the interaction where the initial state is s, initial
action is a (deterministically), and decision rule is given π only for t ⩾ 1.
It cannot be defined as Ps,a conditioned on the event A0 = a because the
probability π(a|s) of this event may be zero.

Proposition 1.3.3. Let π = (πt)t⩾0 be a policy and s ∈ S. Then,

Ps,π =
∑
a∈A

π0(a|s) · Ps,a,π.

Value functions 8

Proof. It is sufficient to prove the identity between those two measures on
the sets that appear in the statement of Proposition 1.3.1, because they
would then uniquely extend to all measurable subsets of H∞.

Let T ⩾ 0 and h(T) = (s0, a0, r1, . . . , rT , sT) ∈ H(T), and denote h(t) :=
(s0, a0, r1, . . . , rr, st) for 0 ⩽ t ⩽ T . If s0 6= s, then the measures of the
identity are zero when evaluated at Cylh(T). We now assume s0 = s.

Fix a ∈ A and consider π′ defined as in Definition 1.3.2. Then,

π0(a|s) · Ps,a,π

(
Cylh(T)

)
= π0(a|s)

T−1∏
t=0

π′
t(at|h(t))p(rt+1, st+1|st, at)

= 1 {s0 = s}
T−1∏
t=0

πt(at|h(t))p(rt+1, st+1|st, at)

= 1 {a0 = a} · Ps,π

(
Cylh(T)

)
.

Summing over a ∈ A then gives∑
a∈A

π0(a|s) · Ps,a,π

(
Cylh(T)

)
= Ps,π

(
Cylh(T)

)
.

Proposition 1.3.4. Let s ∈ S, a ∈ A, π a stationary policy, f : H∞ → R
a bounded measurable function (with respect to the product σ-algebra) and
random variables (S′

0, A
′
0, R

′
1, S

′
2, A

′
2, R

′
2, . . .) with distribution Ps,π or Ps,a,π.

Then, almost-surely,

(i) For all t ⩾ 0,

ES′
t,π

[f(S0, A0, R1, . . .)] = E
[
f(S′

t, A
′
t, R

′
t+1, . . .)

∣∣S′
t

]
,

(ii) and for all t ⩾ 1,

ES′
t,A

′
t,π

[f(S0, A0, R1, . . .)] = E
[
f(S′

t, At,
′R′

t+1, . . .)
∣∣S′

t, A
′
t

]
.

1.4 Value functions
We now introduce value functions which are fundamental tools for solving
MDPs. The optimal value function, defined in the next chapter, associates
to each state the best possible average reward than can be obtained starting
from that state. Almost all algorithms aim at getting close to the optimal
value function through iterative updates.

Definition 1.4.1. (i) A state-value function (aka V-function) is a func-
tion v : S → R or equivalently a vector v = (v(s))s∈S ∈ RS .

Value functions 9

(ii) An action-value function (aka Q-function) is a function q : S ×A → R
or equivalently a vector q = (q(s, a))(s,a)∈S×A ∈ RS×A.

We equip both spaces with the ℓ∞ norm:

‖v‖∞ = max
s∈S

|v(s)| , ‖q‖∞ = max
(s,a)∈S×A

|q(s, a)| ,

and with component-wise inequalities:

v ⩽ v′ ⇐⇒ ∀s ∈ S, v(s) ⩽ v′(s),

q ⩽ q′ ⇐⇒ ∀(s, a) ∈ S ×A, q(s, a) ⩽ q′(s, a).

Lemma 1.4.2. Let (Rt)t⩾1 be a sequence of random variables with values
in R and γ ∈ (0, 1). Then, the series

∑
t⩾1 γ

t−1Rt converges almost-surely,
and its sum is integrable.

Proof. R being a finite subset of R, it holds that maxr∈R |r| < +∞. Then,∣∣γt−1Rt

∣∣ ⩽ γt−1max
r∈R

|r| , a.s.

The result follows the dominated convergence theorem.

Definition 1.4.3. Let π ∈ Π and γ ∈ (0, 1).

(i) The state-value function of policy π with discount factor γ is defined
as

v(γ)π (s) = Es,π

[
+∞∑
t=1

γt−1Rt

]
, s ∈ S.

(ii) The action-value function of policy π with discount factor γ is defined
as

q(γ)π (s, a) = Es,a,π

[
+∞∑
t=1

γt−1Rt

]
, (s, a) ∈ S ×A.

We may denote vπ = v
(γ)
π and qπ = q

(γ)
π when γ is clear from the context.

Remark 1.4.4. vπ(s) corresponds to the expected total reward starting from
state s and following policy π.

Chapter 2

Bellman operators &
optimality

Bellman operators are the fundamental tool for solving MDPs. This chapter
introduces their definitions and properties. We then define optimal value
functions and policies, and characterize them with the help of the Bellman
operators.

We assume that γ ∈ (0, 1) in given. The image of an element x ∈ X by
a map F : X → Y will often be denoted Fx instead of F (x).

2.1 Bellman operators
Definition 2.1.1. Let π be a stationary policy. We define the following
operators.

(i) D(γ) : RS → RS×A as

(D(γ)v)(s, a) =
∑

(r,s′)∈S×R

p(r, s′|s, a)(r + γv(s′)), s ∈ S, a ∈ A.

(ii) Eπ : RS×A → RS as

(Eπq)(s) =
∑
a∈A

π(s|a)q(s, a), s ∈ S.

(iii) E∗ : RS×A → RS as

(E∗q)(s) = max
a∈A

q(s, a), s ∈ S.

(iv) B
(V,γ)
π = Eπ ◦D(γ) (Bellman expectation operator for state-value func-

tions)

10

Bellman operators 11

(v) B
(V,γ)
∗ = E∗ ◦D(γ) (Bellman optimality operator for state-value func-

tions)

(vi) B
(Q,γ)
π = D(γ) ◦ Eπ (Bellman expectation operator for action-value

functions)

(vii) B
(Q,γ)
∗ = D(γ) ◦E∗ (Bellman optimality operator for action-value func-

tions)

We will use lighter notation D,Eπ, E∗, Bπ, B∗ as soon as context prevents
confusion. The following expressions follow from the definitions.

Proposition 2.1.2 (Explicit expression of Bellman operators). Let v ∈ RS ,
q ∈ RS×A, and π a stationary policy. Then, the following expressions hold.

(Bπv)(s) =
∑

(a,r,s′)∈A×S×R

π(a|s)p(r, s′|s, a)
(
r + γv(s′)

)
, s ∈ S,

(B∗v)(s) = max
a∈A

∑
(r,s′)∈S×R

p(r, s′|s, a)(r + γv(s′)), s ∈ S,

(Bπq)(s, a) =
∑

(r,s′,a′)∈S×R×A

p(r, s′|s, a)
(
r + γπ(a′|s′)q(s′, a′)

)
, (s, a) ∈ S ×A,

(B∗q)(s, a) =
∑

(r,s′)∈S×R

p(r, s′|s, a)
(
r + γmax

a′∈A
q(s′, a′)

)
, (s, a) ∈ S ×A.

Proof. Immediate from the definitions.

Proposition 2.1.3 (Bellman operators as expectations). Let v ∈ RS , q ∈
RS×A, π a policy, s ∈ S, a ∈ A. Then,

(i) (Dv)(s, a) = Es,a,π [R1 + γv(S1)],

and if π is stationary,

(ii) (Eπq)(s) = Es,π [q(s,A0)],

(iii) (Bπv)(s) = Es,π [R1 + γv(S1)],

(iv) (Bπq)(s, a) = Es,a,π [R1 + γq(S1, A1)].

(v) (B∗v)(s) = max
a∈A

Es,a,π [R1 + γv(S1)],

(vi) (B∗q)(s, a) = Es,a,π

[
R1 + γmax

a′∈A
q(S1, a

′)

]
.

Bellman operators 12

Proof. Let us prove (i). Let π′ the policy associated with (s, a) used in Def-
inition 1.3.2 to define Ps,a,π. Using the definition of the probability measure
Ps,π (see Proposition 1.3.1),

Es,a,π [R1 + γv(S1)] = Es,π′ [R1 + γv(S1)]

=
∑

(r,s′)∈R×S

(r + γv(s′))

× Ps,π′

(
S ×A× {r} ×

{
s′
}
× (R× S ×A)N

)
=

∑
(r,s′)∈R×S

p(r, s′|s, a)(r + γv(s′))

= (Dv)(s, a)

We now turn to (ii).

Es,πE [q(s,A0)] =
∑
a∈A

q(s, a)× Ps,a

(
S × {a} × (R× S ×A)N

)
=
∑
a∈A

q(s, a)π(a|s) = (Eπq)(s).

We now deduce (iii) using Proposition 1.3.3:

(Bπv)(s) = (Eπ(Dv))(s) =
∑
a∈A

π(a|s)Es,a,π [R1 + γv(S1)]

= Es,π [R1 + γv(S1)] .

For (iv), we combine (i) and (ii) with the help of the Markov property
from Proposition 1.3.4; let (S′

0, A
′
0, R

′
1, . . .) ∼ Ps,a,π, then

(Bπq)(s, a) = (D(Eπq))(s, a) = E
[
R′

1 + γ(Eπq)(S
′
1)
]

= E
[
R′

1 + γ · ES′
1,π

[q(S0, A0)]
]

= E
[
R′

1 + γ · E
[
q(S′

1, A
′
1)
∣∣S′

1

]]
= E

[
R′

1 + γ · q(S′
1, A

′
1)
]
.

Finally, (v) and (vi) follow by composition.

Remark 2.1.4. If for each s ∈ S, v(s) is interpreted as an estimate of the
total reward obtained starting from state s and using policy π, (Bπv)(s) is
then an alternative estimate, as it is the expectation, when starting from
state s of the actual first reward R1, plus λv(S1) which is an estimate of
remaining discounted rewards, as estimated by v. A similar interpretation
holds for Bπq. We will see that the latter estimate is in some sense better:
the Bellman operators will thus be used to iteratively update the estimates.

Bellman equations 13

Definition 2.1.5. Let d, n ⩾ 1 integers. A map F : Rd → Rn is monotone
if for all x, x′ ∈ Rd, x ⩽ x′ implies Fx ⩽ Fx′, where the inequalities are to
be understood component-wise.

Proposition 2.1.6. Let π be a stationary policy. Then, operators D, Eπ,
B

(V)
π and B

(Q)
π are affine with nonnegative coefficients. Eπ is moreover

linear. In particular, they are monotone.

Proof. Immediate from the definitions.

Proposition 2.1.7. Let v ∈ RS , q ∈ RS×A, s ∈ S and a ∈ A. Then,

(i) (E∗q)(s) = sup
π∈Π0

(Eπq)(s) = sup
π∈Π0,d

(Eπq)(s),

(ii) (B∗v)(s) = sup
π∈Π0

(Bπv)(s) = sup
π∈Π0,d

(Bπv)(s),

(iii) (B∗q)(s, a) = sup
π∈Π0

(Bπq)(s, a) = sup
π∈Π0,d

(Bπq)(s, a).

Proof. (i) is an easy consequence from the definition of E∗. Then (ii) and
(iii) follow using the monotonicity from Proposition 2.1.6.

2.2 Bellman equations
Definition 2.2.1. Let X be a set and F : X → X. An element x ∈ X is a
fixed point of F is Fx = x.

The fixed points of Bellman operators will be of particular interest. They
are often written in the form of the so-called Bellman equations: for a given
stationary policy π, a state-value function v ∈ RS is a fixed point of B(V)

π

if, and only if:

v(s) =
∑

(a,r,s′)∈A×S×R

π(a|s)p(r, s′|s, a)
(
r + γv(s′)

)
, s ∈ S.

The above is called the Bellman expectation equation for state-value func-
tions. Similarly, v is the fixed point of B(V)

∗ if, and only if:

v(s) = max
a∈A

∑
(r,s′)∈S×R

p(r, s′|s, a)(r + γv(s′)), s ∈ S,

which is called the Bellman optimality equation. The corresponding equa-
tions for action-value functions are similarly defined. We establish below
that these equations have unique solutions and that they correspond respec-
tively to vπ and v∗, where v∗ is the value function associated with an optimal
policy.

Bellman equations 14

Theorem 2.2.2 (Banach’s fixed point theorem). Let 0 ⩽ γ < 1, (X, d) a
complete metric space, and F : X → X a γ-Lipschitz map (with respect to
distance d). Then, F has a unique fixed point x∗ ∈ X and for all sequence
(xk)k⩾0 satisfying xk+1 = Fxk (k ⩾ 0), it holds that

d(xk, x∗) ⩽ γkd(x0, x∗), k ⩾ 0,

and thus xk −→ x∗ as k → +∞.

Remark 2.2.3. The above convergence is guaranteed regardless of the initial
point x0.

Proposition 2.2.4. Let π be a stationary policy. With respect to the norms
‖ · ‖∞ in RS and RS×A,

(i) D(γ) is γ-Lipschitz continuous,

(ii) Eπ is 1-Lipschitz continuous,

(iii) E∗ is 1-Lipschitz continuous,

(iv) B
(V,γ)
π , B(V,γ)

∗ , BQ,γ
π and B

(Q,γ)
∗ are γ-Lipschitz continuous and admit

unique fixed points.

Proof. Let v, v′ ∈ RS .∥∥Dv′ −Dv
∥∥
∞ = max

(s,a)∈S×A

∣∣Dv′(s, a)−Dv(s, a)
∣∣

= max
(s,a)∈S×A

∣∣∣∣∣∣
∑

(r,s′)∈R×S

p(r, s′|s, a)γ(v′(s′)− v(s))

∣∣∣∣∣∣
⩽ max

(s,a)∈S×A
γ
∥∥v′ − v

∥∥
∞

∑
(r,s′)∈R×S

p(r, s′|s, a)

= γ
∥∥v′ − v

∥∥
∞ ,

where the last inequality follows from p(· |s, a) being a probability distribu-
tion over R× S, which proves (i).

Let q, q′ ∈ RS×A and π a stationary policy.

∥∥Eπq
′ − Eπq

∥∥
∞ = max

s∈A

∣∣∣∣∣∑
a∈A

π(a|s)
∣∣q′(s, a)− q(s, a)

∣∣∣∣∣∣∣
⩽ max

s∈A

∑
a∈A

π(a|s)
∥∥q′ − q

∥∥
∞

=
∥∥q′ − q

∥∥
∞ ,

where the last inequality follows from π(· |s) being a probability distribution
over A.

Bellman equations 15

Let s ∈ S. If (E∗q
′)(s) ⩾ (E∗q)(s), then∣∣(E∗q

′)(s)− (E∗q)(s)
∣∣ = (E∗q

′)(s)− (E∗q)(s)

= max
a′∈A

q′(s, a′)−max
a∈A

q(s, a)

⩽ max
a′∈A

{
q′(s, a′)− q(s, a′)

}
⩽ max

a′∈A

∣∣q′(s, a′)− q(s, a′)
∣∣

⩽
∥∥q′ − q

∥∥
∞ .

Similarly, if (E∗q
′)(s) ⩽ (E∗q)(s), then∣∣E∗q

′(s)− E∗q(s)
∣∣ ⩽ ∥∥q′ − q

∥∥
∞ .

Taking the maximum over s ∈ S yields (iii):∥∥E∗q
′ − E∗q

∥∥
∞ ⩽

∥∥q′ − q
∥∥
∞ .

The Lipschitz property (iv) of Bellman operators then follow by compo-
sition.

Proposition 2.2.5. Let π be a stationary policy. Then,

(i) vπ = Eπqπ,

(ii) qπ = Dvπ,

(iii) vπ is the unique fixed point of B(V)
π ,

(iv) qπ is the unique fixed point of B(Q)
π .

Proof. Let s ∈ S. We prove (i) using Proposition 1.3.3:

(Eπqπ)(s) =
∑
a∈A

π(a|s) · Es,a,π

[
+∞∑
t=1

γt−1Rt

]

= Es,π

[
+∞∑
t=1

γt−1Rt

]
= vπ.

We now turn to (ii). Let a ∈ A. Let (S′
0, A

′
0, R

′
1, . . .) ∼ Ps,a,π. Then,

using the expression of the Bellman operator as an expectation (from Propo-

Greedy policies 16

sition 2.1.3), we write

(Dvπ)(s, a) = Es,a,π [R1 + γvπ(S1)]

= E
[
R′

1 + γvπ(S
′
1)
]

= E

[
R′

1 + γ · ES′
1,π

[
+∞∑
t=1

γt−1Rt

]]

= E

[
R′

1 + γ · E

[
+∞∑
t=1

γt−1R′
t+1

∣∣∣∣∣S′
1

]]

= E

[
+∞∑
t=1

γt−1Rt

]
= vπ,

where for the fourth equality we used the Markov property for Ps,a,π from
Proposition 1.3.4.

Combining (i) and (ii) together with Banach’s fixed point theorem from
Theorem (2.2.2) yields (iv) and (iv).

Remark 2.2.6. In other words, vπ (resp. qπ) is the unique solution of the
Bellman expectation equation for state-value function (resp. action-value
functions).

2.3 Greedy policies
Definition 2.3.1. A stationary and deterministic policy π : S → A is

(i) a greedy policy with respect to an action-value function q ∈ RS×A if
for all s ∈ S,

π(s) ∈ Argmax
a∈A

q(s, a),

where Argmax denotes the set of maximizers.

(ii) a greedy policy with respect to an state-value function v ∈ RS if π ∈
Πg [Dv].

Πg [q] denotes the set of greedy policies with respect to q and Πg [v] is a
shorthand for Πg [Dv]. Notation πg [q] (resp. πg [v]) denotes any element
from Πg [q] (resp. Πg [v]).

Remark 2.3.2. πg [q] corresponds to a policy which selects actions by simply
comparing values of the action-value function q. In the case of πg [v], the
action selection is based on a one-step look-ahead, as it rewrites as follows
using Proposition 2.1.3:

πg(s) ∈ Argmax
a∈A

Es,a,π [R1 + γv(S1)] .

Optimal value functions & policies 17

Proposition 2.3.3. For v ∈ RS (resp. q ∈ RS×A), Πg [v] (resp. Πg [q]) is
nonempty.

Proof. The set of actions A being finite (and nonempty), Argmaxa∈A q(s, a)
is nonempty, and the result follows.

Proposition 2.3.4. Let v ∈ RS and q ∈ RS×A. Then,

(i) E∗q = Eπg [q]q,

(ii) B∗q = Bπg [q]q.

(iii) B∗v = Bπg [v]v,

Proof. Let s ∈ S and π ∈ Πg [q]. By definition of a greedy policy,

(E∗q)(s) = max
a∈A

q(s, a) = q(s, π(s)) =
∑
a∈A

π(s|a)q(s, a) = (Eπq)(s).

Then, B(Q)
∗ q = D◦E∗ = D◦Eπ = Bπ and B

(V)
∗ q = E∗◦D = Eπ◦D = Bπ.

2.4 Optimal value functions & policies
Definition 2.4.1. Let γ ∈ (0, 1). The optimal state-value and actions-value
functions with respect to discount factor γ are respectively defined as

v
(γ)
∗ (s) = sup

π∈Π
v(γ)π (s), s ∈ S,

q
(γ)
∗ (s, a) = sup

π∈Π
q(γ)π (s, a), (s, a) ∈ S ×A.

As soon as discount factor γ is clear from the context, we may simply
use notation v∗ and q∗.
Remark 2.4.2. v∗ and q∗ are well-defined because vπ and qπ can be easily
seen to by bounded by (1− γ)−1maxr∈R |r|.

Definition 2.4.3. A policy π∗ is optimal if vπ∗ = v∗.

Theorem 2.4.4. Let v0 and q0 the unique fixed points of B
(V)
∗ and B

(Q)
∗

respectively. Then, Πg [v0] = Πg [q0] and for πg in the latter set,

(i) v∗ = v0 = vπg ,

(ii) q∗ = q0 = qπg ,

(iii) v∗ = E∗q∗,

(iv) q∗ = Dv∗.

Optimal value functions & policies 18

Remark 2.4.5. Some important takeaways from the above theorem are the
following:

• v∗ (resp. q∗) is the unique fixed point of B(V)
∗ (resp. B(Q)

∗), meaning
the unique solution to the Bellman optimality equation for state-value
function (resp. action-value function);

• there exists a stationary and deterministic optimal policy.

Proof. Let us first prove that q0 = Dv0 and v0 = E∗q0. Indeed,

Dv0 = DB∗v0 = DE∗Dv0 = B∗(Dv0),

therefore, Dv0 is the unique fixed point of B∗, in other words q0 = Dv0.
Then,

E∗q0 = E∗Dv0 = B∗v0 = v0.

Therefore, Πg [v0] = Πg [Dv0] = Πg [q0]. We recall that a set of greedy
policies is never empty, as stated in Proposition 2.3.3.

Let πg ∈ Πg [v0]. Then using the property of greedy policies from Propo-
sition 2.3.4, v0 = B∗v0 = Bπgv0 and q0 = B∗q0 = Bπgq0. Value functions v0

and q0 are therefore the unique fixed points of B(V)
πg and B

(Q)
πg , respectively.

In other words v0 = vπg and q0 = qπg , by Proposition 2.2.5.
Therefore, v0 = vπg ⩽ supπ∈Π0,d

vπ because πg ∈ Π0,d by definition, and
similarly q0 ⩽ supπ∈Π0,d

qπ.
Let us now prove that v0 ⩾ supπ∈Π vπ. Let π = (πt)t⩾0 be any policy,

s ∈ S, and consider random variables (S0, A0, R1, S2, A2, R3, . . .) ∼ Ps,π.
Let t ⩾ 0,

v0(St) = (B∗v0)(St) = max
a∈A

(Dv)(St, a) ⩾ (Dv)(St, At).

Let us rewrite this last quantity. Let (s0, a0) ∈ S such that P [St = s0, At = a0] >
0. Then, using the definition of Ps,π,

(Dv)(s0, a0) =
∑

(r,s′)∈R×S

p(r, s′|s0, a0)(r + γv(s′))

=
∑

(r,s′)∈R×S

P [Rt+1 = r, St+1 = s′, St = s0, At = a0]

P [St = s0, At = a0]
(r + γv(s′))

= E [Rt+1 + γv(St+1) |St, At] .

Therefore,
v0(St) ⩾ E [Rt+1 + γv(St+1) |St, At] .

Optimal value functions & policies 19

Then using the expression of (Bv0)(s) from Proposition 2.1.3, applying
the above recursively, we get

v0(s) = (Bv0)(s) = E [R1 + γv0(S1)]

⩾ E [R1 + γE [R2 + γv(S2) |S1, A1]]

⩾ · · · ⩾ Es,π

[
T∑
t=1

γt−1Rt + γT v(ST)

]

⩾ E

[
+∞∑
t=1

γt−1Rt

]
= vπ(s).

Therefore,

v∗ = sup
π∈Π

vπ ⩽ v0 = vπg ⩽ sup
π∈Π0,d

vπ ⩽ sup
π∈Π

vπ = v∗,

and the lower and upper bounds being equal, all inequalities are equalities,
and the supremums are maximums because they are attained for πg ∈ Π0,d ⊂
Π.

Then, we write

q∗ = sup
π∈Π

qπ ⩾ max
π∈Π0,d

qπ ⩾ qπg = q0 = Dv0

= D

(
max
π∈Π

vπ

)
⩾ sup

π∈Π
Dvπ = sup

π∈Π
qπ = q∗,

where the last inequality holds by monotonicity of D from Proposition 2.1.6
(by writing for π ∈ Π, Dmaxπ∈Π vπ ⩾ Dvπ and then taking the supremum
over π ∈ Π). Therefore, all inequalities are equalities and all supremums are
maximums.

Chapter 3

Dynamic programming

The properties of the Bellman operators established in the previous chapter
allow the construction and analysis of dynamic programming algorithms
(DP), meaning algorithms that solve MDPs with known dynamics. Starting
from Chapter 4, we will study reinforcement learning, which is solving MDPs
with either unknown dynamics, and/or by approximating the problem in
some way. Most reinforcement learning methods (RL) are sample variants
of dynamic programming algorithms.

3.1 Value iteration
Policy evaluation is the computation of the value function vπ or qπ of a policy
π. Many dynamic programming and reinforcement learning algorithms use
policy evaluation as an intermediate step in finding the optimal policy. The
(synchronous) value iteration for policy evaluation computes vπ (or qπ), in
the case of a stationary policy, by iterating the Bellman expectation operator
B

(V)
π (resp. B

(Q)
π). Synchronous means that all values (for each state, or

each state-action pair) are updated simultaneously using the values from
the current iterate.

In the context of MDPs, control is the computation of an optimal op-
timal policy. The (synchronous) value iteration for control approximately
computes v∗ (resp. q∗) by iterating the Bellman expectation operator B

(V)
∗

(resp. B(Q)
∗) and then considers a greedy policy.

Definition 3.1.1 (Synchronous value iteration). Let π be a stationary pol-
icy, (vk)k⩾0 and (qk)k⩾0 two sequences in RS and RS×A respectively.

(i) (vk)k⩾0 (resp. (qk)k⩾0) is a synchronous state-value (resp. action-value)
iteration for the evaluation of π if for all k ⩾ 0,

vk+1 = Bπvk, (resp. qk+1 = Bπqk)

20

Value iteration 21

(ii) (vk)k⩾0 (resp. (qk)k⩾0) is a synchronous state-value (resp. action-value)
iteration for control if for all k ⩾ 0,

vk+1 = B∗vk, (resp. qk+1 = B∗qk) .

Remark 3.1.2. Value iterations for state-value functions explicitly write as

vk+1(s) =
∑

(a,r,s′)∈A×S×R

π(a|s)p(r, s′|s, a)(r + γvk(s
′)), s ∈ S, k ⩾ 0,

for the evaluation of π, and as

vk+1(s) = max
a∈A

∑
(r,s′)∈S×R

p(r, s′|s, a)(r + γvk(s
′)), s ∈ S, k ⩾ 0,

for control. Similar expression hold for action-value functions.

Proposition 3.1.3 (Equivalence between synchronous state-value and ac-
tion-value iterations). Let π be a stationary policy, (vk)k⩾0 and (qk)k⩾0 two
sequences in RS and RS×A respectively. Consider the following assertions.

(a) ∀k ⩾ 0, vk+1 = Bπvk;

(b) ∀k ⩾ 0, qk+1 = Bπqk;

(c) ∀k ⩾ 0, vk+1 = B∗vk;

(d) ∀k ⩾ 0, qk+1 = B∗qk;

(e) ∀k ⩾ 0, qk = Dvk;

(f) ∀k ⩾ 0, vk = Eπqk;

(g) ∀k ⩾ 0, vk = E∗qk.

Then,

(i) (a) and (e) imply (b),

(ii) (b) and (f) imply (a),

(iii) (c) and (e) imply (d),

(iv) (d) and (g) imply (c).

Proof. Assume (a) and (e). Then for all k ⩾ 0,

Bπqk = DEπDvk = DBπvk = Dvk+1 = qk+1,

and (b) holds. The other implications are proved similarly.

Proposition 3.1.4 (Linear convergence of synchronous value iteration).
Let π be a stationary policy.

• If (vk)k⩾0 and (qk)k⩾0 are synchronous state-value (resp. action-value)
iterations for the evaluation of policy π, then for all k ⩾ 0,

‖vk − vπ‖∞ ⩽ γk ‖v0 − vπ‖∞ ,

‖qk − qπ‖∞ ⩽ γk ‖q0 − qπ‖∞ .

Policy iteration 22

• If (vk)k⩾0 and (qk)k⩾0 are synchronous state-value (resp. action-value)
iterations for control, then for all k ⩾ 0,

‖vk − v∗‖∞ ⩽ γk ‖v0 − v∗‖∞ ,

‖qk − q∗‖∞ ⩽ γk ‖q0 − q∗‖∞ .

Proof. We know from Proposition 2.2.5 and Theorem 2.4.4 that vπ (resp. qπ,
v∗, q∗) is the unique fixed point of Bellman operator B(V)

π (resp. B(Q)
π , B(V)

∗ ,
B

(Q)
∗). The latter is γ-Lipschitz continuous with respect to ‖ · ‖∞ according

to Proposition 2.2.4. The Banach’s fixed point theorem (Theorem 2.2.2)
then applies and gives the result.

Remark 3.1.5 (Computational complexity and memory requirements). The
above results demonstrate that both algorithms for policy evaluation (resp.
control) are equivalent in terms of output solutions. However, memory re-
quirements of the state-value counterpart are lower by a factor |A|. There is
therefore no reason to choose action-value iteration in the context of dynamic
programming. In reinforcement learning however, the additional stored val-
ues of the latter will be of great help.

3.2 Policy iteration
Proposition 3.2.1 (Greedy policy improvement). Let π be a stationary
policy and πg ∈ Πg [vπ]. Then,

(i) vπg ⩾ vπ,

(ii) qπg ⩾ qπ,

(iii) vπg = vπ implies vπ = v∗,

(iv) qπg = qπ implies qπ = q∗.

Proof. Using the fact that vπ is a fixed point of Bπ (Proposition 2.2.5),
the property B∗ = supπ0∈Π0

Bπ0 from Proposition 2.1.7 and the property of
greedy policies from Proposition 2.3.4,

vπ = Bπvπ ⩽ B∗vπ = Bπgvπ.

Then, applying on both sides operator Bπg , which is monotone thanks to
Proposition 2.1.6, we get Bπgvπ ⩽ B2

πg
vπ. Therefore, vπ ⩽ Bk

πg
vπ for all

k ⩾ 1, and by Proposition 3.1.4, taking the limit as k → +∞ gives (i).
Besides, using the monotonicity of D from Proposition 2.1.6, together with
Proposition 2.2.5 gives (ii):

qπ = Dvπ ⩽ Dvπg ⩽ qπg .

Using Propositions 2.2.5 and 2.3.4, we write vπ = vπg = Bπgvπg =
Bπgvπ = B∗vπ. Thus, vπ is a fixed point of B∗, and vπ = v∗ by Theo-
rem 2.4.4, which proves (iii). (iv) is proved similarly.

Policy iteration 23

Definition 3.2.2 (Policy iteration). A sequence (πk)k⩾0 of stationary poli-
cies is a policy iteration if πk+1 ∈ Πg [vπk

] for all k ⩾ 0.

Remark 3.2.3 (Policy iteration is an idealized algorithm). Except in situa-
tions where vπk

can be computed exactly, policy iteration is only an idealized
algorithm because each step would involve the computation of vπk

by iter-
ating Bπk

infinitely. A practical variant, where Bπk
is only iterated a finite

number of times is discussed in Remark 3.2.6 below.
Remark 3.2.4 (Equivalent definition from action-value functions). Policy it-
eration can be written with action-value functions:

πk+1 ∈ Πg [qπk
] ,

which is equivalent to the above, because by definition of greedy policies for
state-value functions gives:

Πg [vπk
] = Πg [Dvπk

] = Πg [qπk
] ,

where we used Proposition 2.2.5 for the last equality. Unlike value iterations,
the corresponding algorithm is exactly the same even regarding the compu-
tational and memory requirements, because determining a greedy policy in
Πg [vπk

] requires by definition the computation of Dvπk
= qπk

.

Proposition 3.2.5 (Linear convergence of policy iteration). Let (πk)k⩾0 be
a policy iteration. Then for all k ⩾ 0,

‖vπk
− v∗‖∞ ⩽ γk ‖vπ0 − v∗‖∞ ,

‖qπk
− q∗‖∞ ⩽ γk ‖qπ0 − q∗‖∞ .

Proof. Denote vk = vπk
for k ⩾ 0.

v∗ − vk+1 = B∗v∗ −B∗vk + (B∗ −Bπk+1
)vk +Bπk+1

(vk − vk+1)

⩽ B∗v∗ −B∗vk,

where the inequality holds because the second term is zero:

Bπk+1
vk = Bπg [vk]vk = B∗vk

and the last term is nonpositive because Bπk+1
is monotone according to

Proposition 2.1.6, and vk ⩽ vk+1 by property of greedy policy improvement
from Proposition 3.2.1. Moreover, by definition of v∗, v∗ ⩾ vπk+1

= vk+1.
Therefore,

0 ⩽ v∗ − vk+1 ⩽ B∗v∗ −B∗vk

and using the Lipschitz continuity of B∗ from Proposition 2.2.4,

‖v∗ − vk+1‖∞ ⩽ ‖B∗v∗ −B∗vk‖∞ ⩽ γ ‖v∗ − vk‖ .

The result for action-value functions is proved similarly.

Asynchronous fixed point iterations 24

Remark 3.2.6 (Generalized iteration). It is possible to define a family of
iterations, which generalizes both value iteration and policy iteration. It is
sometimes called generalized policy iteration or optimistic policy iteration. A
sequence (vk)k⩾0 in RS (resp. (qk)k⩾0 in RS×A) is a generalized iteration for
state-value functions (resp. action-value functions) if there exists a sequence
(mk)k⩾0 in {1, 2, . . . } ∪ {∞} such that for all k ⩾ 0,

πk ∈ Πg [vk] , (resp. πk ∈ Πg [qk])

vk+1 = Bmk
πk

vk,
(
resp. qk+1 = Bmk

πk
qk
)
,

where by convention, B∞
π v = vπ (for all π ∈ Π0 and v ∈ RS×A). Then,

value iteration corresponds to mk = 1 (for all k ⩾ 0) and policy iteration
corresponds to mk = ∞ (for all k ⩾ 0). A practical implementation of policy
iteration where mk may be large but not infinite then belongs to this family.

3.3 Asynchronous fixed point iterations
Theorem 3.3.1 (A generalized fixed point theorem). Let (X, d) a metric
space, (γk)k⩾0 nonnegative sequence in (0, 1) and (Fk)k⩾0 a sequence of op-
erators in X that share a common fixed point x∗ ∈ X and so that Fk is
γk-Lipschitz continuous. If (xk)k⩾0 satisfies xk+1 = Fkxk for all k ⩾ 0, then

d (xk, x∗) ⩽ d (x0, x∗)

(
k−1∏
ℓ=0

γℓ

)
.

If the above product converges to zero, then xk −→ x∗ as k → +∞.

Proof. Let k ⩾ 0.

d (xk+1, x∗) = d (Fkxk, Fkx∗) ⩽ γkd (xk, x∗) ,

hence the result.

For the remaining of this section, d ⩾ 1 will be a given integer.

Definition 3.3.2. Let F : Rd → Rd. For J ⊂ {1, . . . , d} and denote F |J :
Rd → Rd the operator defined as

(F |Jx)j = (Fx)j

for j ∈ J and and (F |Jx)j′ = xj′ for j′ 6∈ J . If J = {j} for some j ∈
{1, . . . , d}, we denote F |j = F |{j}.

Remark 3.3.3. F |J can be written as

F |J = I + 1J ⊗ (F − I) = (1− 1J)⊗ I + 1J ⊗ F

where 1J denotes the vector with value 1 for components in J and value
0 for the other components, and ⊗ denotes component-wise multiplication.
This expression will be easier to generalize.

Asynchronous fixed point iterations 25

Proposition 3.3.4. Let F : Rd → Rd be a 1-Lipschitz continuous map for
‖ · ‖∞. Then for all J ⊂ {1, . . . , d}, F |J is 1-Lipschitz continuous for ‖ · ‖∞.
Proof. For x, x′ ∈ Rd,∥∥∥F |Jx− F |Jx′

∥∥∥
∞

= max
1⩽j⩽d

∣∣∣(F |Jx)j − (F |Jx′)j

∣∣∣
= max

{
max
j∈J

∣∣∣(F |Jx)j − (F |Jx′)j

∣∣∣ , max
j ̸∈J

∣∣∣(F |Jx)j − (F |Jx′)j

∣∣∣}
⩽ max

{
max
j∈J

∣∣(Fx)j − (Fx′)j
∣∣ , max

j ̸∈J

∣∣xj − x′j
∣∣}

⩽ max
{∥∥Fx− Fx′

∥∥
∞ ,

∥∥x− x′
∥∥
∞
}

⩽
∥∥x− x′

∥∥
∞ .

Proposition 3.3.5. Let F : Rd → Rd and x ∈ Rd. The following proposi-
tions are equivalent:

(i) x a fixed point of F ,

(ii) x a is fixed point of F |j for all j ∈ {1, . . . , d},

(iii) x a is fixed point of F |J for all J ⊂ {1, . . . , d}.
Proof. Immediate

Proposition 3.3.6. Let γ ∈ [0, 1] and F : Rd → Rd a γ-Lipschitz contin-
uous map for ‖ · ‖∞. Let J1, . . . , JM be such that

⋃M
m=1 Jm = {1, . . . , d}.

Then, F |JM ◦ · · · ◦ F |J1 is γ-Lipschitz continuous for ‖ · ‖∞.
Proof. For each 1 ⩽ m ⩽ M , denote F 1:m = F |Jm ◦ F |Jm−1 ◦ · · · ◦ F |J1 .

Now fix 1 ⩽ j ⩽ d and let m be an integer such that j ∈ Jm. Then it
follows that,

(F 1:Mx)j = (F |JM (F 1:M−1x))j = (F 1:M−1x)j = · · · = (F 1:mx)j = (F (F 1:m−1x))j .

Similarly, (F 1:Mx′)j = (F (F 1:m−1x′))j . Then using the above,∣∣(F 1:Mx)j − (F 1:Mx′)j
∣∣ = ∣∣(F (F 1:m−1x))j − (F (F 1:m−1x′))j

∣∣
⩽
∥∥F (F 1:m−1x)− F (F 1:m−1x′)

∥∥
∞

⩽ γ
∥∥F 1:m−1x− F 1:m−1x′

∥∥
∞

⩽ γ
∥∥x− x′

∥∥
∞ ,

where we used the γ-Lipschitz property of F and for the last inequality the
1-Lipschitz continuity of each map F1, F2, . . . , Fm−1 from Proposition 3.3.4.
Taking the maximum over j yields∥∥F 1:Mx− F 1:Mx′

∥∥
∞ ⩽ γ

∥∥x− x′
∥∥
∞ .

Asynchronous value iterations 26

Theorem 3.3.7. Let γ ∈ (0, 1), F : Rd → Rd a γ-Lipschitz continuous map
for ‖ · ‖∞, and (Jk)k⩾0 a sequence of sets so that each j ∈ {1, . . . , d} belongs
to infinitely many sets. If (xk)k⩾0 satisfies

xk+1 = F |Jkxk,

then it converges to the unique fixed point of F .

Proof. Recursively define an increasing sequence of integers (kℓ)ℓ⩾0 as fol-
lows. Let k0 = 0 and k1 be the smallest integer such that

k1−1⋃
k=0

Jk = {1, . . . , d} ,

which exists by assumption. Similarly for ℓ ⩾ 2, let kℓ the smallest integer
larger than kℓ−1 such that

kℓ−1⋃
k=kℓ−1

Jk = {1, . . . , d} .

Denote Fk = F |Jk for all k ⩾ 0 and Gℓ = Fkℓ+1−1 ◦ · · · ◦ Fkℓ+1 ◦ Fkℓ for all
ℓ ⩾ 0. Then we can apply Proposition 3.3.6 which gives that each map Gℓ

is γ-Lipschitz continuous for ‖ · ‖∞. Because xkℓ+1
= Gℓxkℓ for all ℓ ⩾ 0, by

Theorem 3.3.1, we can write

‖xkℓ − x∗‖ ⩽ γℓ ‖x0 − x∗‖ , ℓ ⩾ 0,

where x∗ is the unique fixed point of F . Moreover, using the fact that each
map Fk (k ⩾ 0) is 1-Lipschitz continuous for ‖ · ‖∞ and has x∗ as fixed point
thanks to Propositions 3.3.4 and 3.3.5, we can write for k > kℓ,

‖xk − x∗‖∞ = ‖(Fk−1 ◦ · · · ◦ Fkℓ)xkℓ − (Fk−1 ◦ · · · ◦ Fkℓ)x∗‖∞
⩽ ‖xkℓ − x∗‖∞ ⩽ γℓ ‖x0 − x∗‖∞ .

Hence the convergence of xk to x∗ as k → +∞.

3.4 Asynchronous value iterations
Definition 3.4.1 (Asynchronous value iterations). Let π be a stationary
policy.

(i) A sequence (vk)k⩾0 in RS is an asynchronous state-value iteration for
the evaluation of policy π (resp. for control) if there exists a sequence
(Sk)k⩾0 of subsets of S such that

vk+1 = B|Sk
π vk,

(
resp. vk+1 = B

|Sk
∗ vk

)
.

(Sk)k⩾0 is then called the sequence of updated states.

Asynchronous value iterations 27

(ii) A sequence (qk)k⩾0 in RS×A is an asynchronous state-value iteration for
the evaluation of policy π (resp. for control) if there exists a sequence
(Qk)k⩾0 of subsets of S ×A such that

qk+1 = B|Qk
π qk,

(
resp. qk+1 = B

|Qk
∗ qk

)
.

(Qk)k⩾0 is then called the sequence of updated state-action pairs.

Proposition 3.4.2 (Convergence of asynchronous value iterations). Let π
be a stationary policy.

(i) Let (vk)k⩾0 be a state-value iteration for the evaluation of policy π
(resp. for control) where each state is updated infinitely. Then, vk
converges to vπ (resp. v∗) as k → +∞.

(ii) Let (qk)k⩾0 be a action-value iteration for the evaluation of policy π
(resp. for control) where each state-action pair is updated infinitely.
Then, qk converges to qπ (resp. q∗) as k → +∞.

Proof. Follows from Theorem 3.3.7.

Remark 3.4.3 (Single-component updates).

Chapter 4

Tabular reinforcement
learning

Starting from this chapter, we consider MDPs with unknown dynamics, in
the sense that the algorithms we are allowed to consider may interact with
the environement but do not have access to the transition dynamic p in
an explicit form. In particular, the operator D, and therefore the Bellman
operators cannot be computed exactly. The image of a value function by a
Bellman operator will then be replaced by a stochastic estimator, and the
replacement-based updates from the deterministic fixed point iterations will
be generalized into averaging-based stochastic ones.

Another consequence of operator D being unavailable is that we cannot
determine a greedy policy with respect to a state-value function v ∈ RS .
For that reason, we will rely on action-value functions instead. An alterna-
tive, which will be dealt with later, is model-based methods which estimate
the transition dynamics through interaction, and which can then derive an
approximatively greedy policy with respect to a state-value function.

This chapter focuses on tabular methods, which work by manipulating
whole action-value functions q ∈ RS×A and whole stationnary policies π ∈
∆(A)S . In the following chapters, we will study methods that approximate
action-value functions and/or policies with parametric families for better
scalability.

4.1 Stochastic asynchronous fixed point iterations
The asynchronous fixed-point iterations in Rd (d ⩾ 1) from Section 3.3 can
be written as

xt+1 = (1− 1Jk)⊗ xk + 1Jk ⊗ Fxk, k ⩾ 0,

where ⊗ denotes component-wise multiplication, Jk is the set of components
that are updated at iteration k, and 1Jk the correpsonding indicator vec-

28

Stochastic estimators of Bellman operators 29

tor, meaning for all 1 ⩽ j ⩽ d, (1Jk)j = 1{j∈Jk}. This expression easily
generalises into an averaging procedure of the form

xt+1 = (1− αk)⊗ xt + αk ⊗ f̂k, k ⩾ 0,

where αk is a vector in [0, 1]d, which is sometimes called a stochastic ap-
proximation procedure and presented as a method which computes an ap-
proximate zero of operator F − Id, if f̂k, conditionnaly on xk is an un-
biased estimator of Fxk. In addition to being a stochastic generaliza-
tion of fixed-point iterations, it can also be seen as an extension of ba-
sic mean estimation. If (Zk)k⩾1 are i.i.d. random vectors with common
mean µ ∈ Rd, then µ is the unique fixed point of operator x 7→ µ, and
procedure xk+1 = (1 − 1

k+1)xk + 1
k+1zk is equivalent to simple averaging

xk+1 =
1

k+1

∑k
ℓ=0 zk.

We give without proof the following convergence guarantee.

Theorem 4.1.1 (Tsitsiklis, 1994). Let d ⩾ 1, γ ∈ (0, 1), F : Rd → Rd a γ-
Lipschitz continous map with respect to ‖ · ‖∞, (xk)k⩾0, (αk)k⩾0 and (f̂k)k⩾0

sequences of random vectors in Rd and (Fk)k⩾0 a filtration. We assume that

(i) xk+1 = (1− αk)⊗ xk + αk ⊗ f̂k, for all k ⩾ 0,

(ii) xk and αk are Fk-measurable, for all k ⩾ 0,

(iii) there exists c1, c2 ⩾ 0 such that for all k ⩾ 0 and 1 ⩽ j ⩽ d,

αk,j 6= 0 =⇒

E
[
f̂k,j

∣∣∣Fk

]
= (Fxk)j ,

Var
(
f̂k,j

∣∣∣Fk

)
⩽ c1 + c2 ‖xk‖2∞ ,

(iv) for all 1 ⩽ j ⩽ d, almost-surely, (αk,j)k⩾0 is a nonnegative sequence
and

+∞∑
k=0

αk,j = +∞ and
+∞∑
k=0

α2
k,j < +∞.

Then, (xk)k⩾0 converges almost-surely to the unique fixed point of F .

4.2 Stochastic estimators of Bellman operators
We know from Proposition 2.1.3 that Bellman expectation operators can
be written as expectations. We derive similar expressions for (B

(V)
π)T and

(B
(Q)
π)T (for T ⩾ 1) that involve an expectation of the discounted sum

of rewards up to time T plus an approximation of the remaining rewards.
We then also derive a similar expression for B

(Q)
∗ . Those will be used to

construct stochastic estimators of Bellman operators.

Stochastic estimators of Bellman operators 30

Proposition 4.2.1. Let T ⩾ 1, v ∈ RS , q ∈ RS×A, s ∈ S and a ∈ A.

(i) (BT
π v)(s) = Es,π

[
T∑
t=1

γt−1Rt + γT v(ST)

]
.

(ii) (BT
π q)(s, a) = Es,a,π

[
T∑
t=1

γt−1Rt + γT q(ST , AT)

]
.

(iii) (BT
∗ v)(s) = max

π∈Π0,d

Es,π

[
T∑
t=1

γt−1Rt + γT v(ST)

]
.

(iv) (BT
∗ q)(s, a) = max

π∈Π0,d

Es,a,π

[
T∑
t=1

γt−1Rt + γT q(ST , AT)

]
.

Proof. We proceed by induction. Property (i) is true for T = 1 by Proposi-
tion 2.1.3. For T ⩾ 2, let (S′

0, A
′
0, R

′
0, . . .) ∼ Ps,π and we write

(BT
π)(s) = (BT−1

π Bπv)(s) = E

[
T−1∑
t=1

γt−1R′
t + γT−1(Bπv)(S

′
T−1)

]

= E

[
T−1∑
t=1

γt−1R′
t + γT−1ES′

T−1,π
[R1 + γv(S1)]

]

= E

[
T−1∑
t=1

γT−1R′
t + γT−1E

[
R′

T + γv(S′
T)
∣∣S′

T−1

]]

= E

[
T∑
t=1

Rt + γT v(S′
T)

]
,

where we used the Markov property from Proposition 1.3.4 to get the third
line. This proves property (i). Property (ii) is proved similarly. Then,
properties (iii) and (iv) immediatly follow from Proposition 2.1.7.

Regarding Bellman optimality operators, the above expressions for (B(V)
∗)T

and (B
(V)
∗)T are not a priori written as expectations, but as a maximums

of expectations, and therefore do not yield straightforward constructions for
unbiaised stochastic estimators. In the special case of B(Q)

∗ however (with
T = 1), the following corollary does give such an expression.

Corollary 4.2.2. For q ∈ RS×A and (s, a) ∈ S ×A,

(B∗q)(s, a) = E(R,S′)∼p(· |s,a)

[
R+ γmax

a∈A
q(S′, a)

]
.

Stochastic estimators of Bellman operators 31

Proof. Proposition 4.2.1 gives

(B∗q)(s, a) = max
π∈Π0,d

Es,a,π [R1 + γq(S1, A1)] .

Let π ∈ Π0,d and (S′
0, A

′
0, R

′
1, . . .) ∼ Ps,a,π. Then,

Es,a,π [R1 + γq(S1, A1)] = E
[
R′

1 + γq(S′
1, A

′
1)
]

⩽ E
[
R′

1 + γmax
a∈A

q(S′
1, a)

]
= E

[
R′

1 + γq(S′
1, πg [q] (S

′
1))
]

= Es,a,πg [R1 + γq(S1, A1)] .

Therefore, taing the maximum over π ∈ Π0,d and because πg [q] ∈ Π0,d by
definition of greedy policies, πg attains the maximum and

(B∗q)(s, a) = Es,a,πg [R1 + γq(S1, A1)]

= E
[
R′

1 + γmax
a∈A

q(S′
1, a)

]
= E(R,S′)∼p(· |s,a)

[
R+ γmax

a∈A
q(S′, a)

]
,

where the last equality stands because (R′
1, S

′
1) ∼ p(· |s, a) as an immediate

consequence of the definition of Ps,a,π.

Definition 4.2.3. For T ⩾ 1, we call history of length T+ a tuple of the
form:

(S0, A0, R1, . . . , ST−1, AT−1, RT , ST , AT) ∈ (S ×A×R)T−1 × S ×A.

We denote H(T+) the set of histories of length T+.

Definition 4.2.4. For T ⩾ 1, s ∈ S and a ∈ A, and π ∈ Π0, we denote
P(T+)
s,a,π the probability distribution on H(T+) induced by Ps,a,π. By convention

and for consistency, we denote H(∞+) = H(∞) and P(∞+)
s,a,π = Ps,a,π.

For T ⩾ 1, H = (S0, A0, R1, . . . ST , AT) ∈ H(T+) and q ∈ RS×A, we
denote

(B̂T q)(H) =
T∑
t=1

γt−1Rt + γT q(ST , AT),

and if H ∼ P(T+)
s,a,π for some (s, a) ∈ S × A and π ∈ Π0, according to Propo-

sition 4.2.1, (B̂T q)(H) is an unbiased estimator of (BT
π q)(s, a).

For consistency, we also denote for H = (S0, A0, R1, . . .) ∈ H(∞)

(B̂∞q)(H) =

+∞∑
t=1

γt−1Rt,

Stochastic estimators of Bellman operators 32

which does not depend on q, and which is an unbiased estimator of qπ =
limT→+∞BT

π q by definition of the latter (as soon as H(∞) ∼ Ps,a,π).
For (R,S′) ∈ R× S, we denote

(B̂∗q)(R,S′) = R+ γmax
a∈A

q(S′, a),

and if (R,S′) ∼ p(· |s, a) for some (s, a) ∈ S × A, then (B̂∗q)(R,S′) is an
unbiased estimator of (B∗q)(s, a) thanks to Corollary 4.2.2.

The following proposition establishes upper bounds on the variance of
those estimators.

Proposition 4.2.5. Let T ⩾ 0, q ∈ RS×A and (s, a) ∈ S × A. Denote
MR = supr∈R |r|.

(i) If H ∼ P(T+)
s,a,π , then

Var
(
(B̂T q)(H)

)
⩽ 4M2

R
1− γ

+
5

1− γ
‖q‖2∞ .

(ii) If (R,S′) ∼ p(· |s, a), then

Var
(
(B̂∗q)(R,S′)

)
⩽ 2M2

R + 2γ2 ‖q‖2∞ .

Proof. Denote H = (S0, A0, R1, . . .). Note that for all 1 ⩽ t ⩽ T ,

Var (Rt) ⩽ E
[
R2

t

]
⩽ M2

R,

and
Var (q(ST , AT)) ⩽ E

[
q(ST , AT)

2
]
⩽ ‖q‖2∞ ,

and similarly Var (maxa∈A q(S, a)) ⩽ ‖q‖2∞. Then, using formula

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

VarXi + 2
∑
i<j

Cov(Xi, Xj)

and inequalities

Cov(X,Y) ⩽
√

(VarX)(VarY) ⩽ 2VarX + 2VarY,

Policy evaluation 33

we write

Var
(
(B̂T q)(H)

)
= Var

(
T∑
t=1

γt−1Rt + γT q(ST , AT)

)

=
T∑
t=1

Var
(
γt−1Rt

)
+Var

(
γT q(ST , AT)

)
+

+ 2
∑

1⩽t<t′⩽T

Cov
(
γt−1Rt, γ

t′−1Rt′

)

+ 2
T∑
t=1

Cov(γt−1Rt, γ
T q(ST , AT))

⩽ M2
R

T∑
t=1

γ2t−2 + γ2T ‖q‖2∞ + 2M2
R

∑
1⩽t<t′⩽T

γt+t′−2

+ 4
T∑
t=1

γT+t−1
(
M2

R + ‖q‖2∞
)
.

(i) follows by simplifying. We now turn to (ii):

Var
(
(B̂∗q)(R,S′)

)
= Var

(
R+ γmax

a∈A
(S′, a)

)
⩽ 2VarR+ 2γ2Var

(
max
a∈A

q(S′, a)

)
⩽ 2M2

R + 2γ2 ‖q‖2∞ .

4.3 Policy evaluation
In this section, we study methods that compute the action-value function
qπ of a stationary policy π by combining stochastic synchronous fixed point
iteration from Section 4.1 and estimators of Bellman expectation operator
B

(Q)
π from Section 4.2.

Let us first give an informal description. Let T ∈ {1, 2, . . . }∪{+∞}. For
each k ⩾ 0, we choose a state-action pair (S0,k, A0,k), possibly at random
as a function of previous observations. Starting from initial state S0,k and
action A0,k, we generate a history of length T+ by using policy π:

Hk = (S0,k, A0,k, R1,k, . . . , ST,k, AT,k) |S0,k, A0,k ∼ P(T+)
S0,k,A0,k,π

.

We asynchronously update the component of the action-value function cor-

Policy evaluation 34

responding to (S0,k, A0,k) so that

qk+1(S0,k, A0,k) =

k∑
ℓ=0

1 {(S0,ℓ, A0,ℓ) = (S0,k, A0,k)} × B̂T (Hk)

k∑
ℓ=0

1 {(S0,ℓ, A0,ℓ) = (S0,k, A0,k)}

,

and qk+1(s, a) = qk(s, a) for (s, a) 6= (S0,k, A0,k), which can be equivalently
written as

qk+1 = (1− αk)⊗ qk + B̂T (Hk)αk,

where

αk =

(
1 {S0,k = s, A0,k = a}∑k
ℓ=0 1 {S0,ℓ = s, A0,ℓ = a}

)
(s,a)∈S×A

.

• The case T = 1 is called Temporal Difference (TD).

• The case 1 < T < +∞ is called T -step Temporal Difference.

• The case T = +∞ is called on-policy Monte-Carlo policy evaluation,
and cannot be implemented in general, because they require to gen-
erate histories of infinite length. They may however be implemented
in cases where either the policy at hand and/or the assumptions on
the MDP force the rewards to be nonzero only for a finite number of
steps.

Proposition 4.3.1. Let T ∈ {1, 2, . . . } ∪ {+∞}, π a stationary policy,
(Hk)k⩾0 a family of random histories of length T+ denoted

Hk = (S0,k, A0,k, R1,k, . . . , ST,k, AT,k), k ⩾ 0.

Consider filtration F = (Fk)k⩾0 where

Fk = σ(H1, . . . , Hk−1, S0,k, A0,k), k ⩾ 0.

We assume that:

(i) for all k ⩾ 0, the law of random history Hk conditionnaly on Fk is
PS0,k,A0,k,π,

(ii) (qk)k⩾0 is a random sequence in RS×A satisfying for all k ⩾ 0, almost-
surely,

qk+1 = (1− αk)⊗ qk + B̂T (Hk)αk,

where,

αk =

(
1 {S0,k = s, A0,k = a}∑k
ℓ=0 1 {S0,ℓ = s, A0,ℓ = a}

)
(s,a)∈S×A

,

Q-learning 35

(iii) almost-surely, for all (s, a) ∈ S ×A,

+∞∑
k=0

1 {S0,k = s, A0,k = a} = +∞.

Then, qk converges almost-surely to qπ as k → +∞.

Proof. We can see that above satisfy the assumptions of Theorem 4.1.1
with operator (B(Q)

π)T (where in the case T = +∞, (B(Q)
π)∞ corresponds to

the constant map q 7→ qπ), which is indeed γ-Lipschitz thanks to Proposi-
tion 2.2.4 and which gives the almost-sure convergence of qk to its unique
fixed point qπ.

Indeed, the assumptions on the stochastic estimators are given by Propo-
sitions 4.2.1 & 4.2.5 and Corollary 4.2.2.

Regarding measurability, for k ⩾ 0, it follows from the definition of αk

that it is Fk-measurable. We then prove by an immediate induction that qk
is Fk-measurable.

Finally, for all (s, a) ∈ S ×A,

+∞∑
k=0

αk(s, a) =
+∞∑
k=0

1 {S0,k = s, A0,k = a}∑k
ℓ=0 1 {S0,ℓ = s, A0,ℓ = a}

=
+∞∑
m=1

1

m
= +∞,

and
+∞∑
k=0

αk(s, a)
2 =

+∞∑
k=0

1 {S0,k = s, A0,k = a}
(
∑k

ℓ=0 1 {S0,ℓ = s, A0,ℓ = a})2
=

+∞∑
m=1

1

m2
< +∞.

4.4 Q-learning
We now turn to Q-learning, which is one of the core reinforcement learning
algorithms for control. It combines the stochastic fixed point iterations from
Tsitsiklis’ Theorem 4.1.1 with the stochastic estimator of Bellman optimality
operator from Corollary 4.2.2.

It can be informally described as follows. For each k ⩾ 0, we choose
a state-action pair (Sk, Ak), possibly at random as a function of previous
observations. Starting from initial state Sk and action Ak, we generate a
history of length 1+, meaning a reward and a next state given by the MDPs
dynamic (which needs not be known explicitely):

Hk = (Sk, Ak, Rk, S
′
k) |Sk, Ak ∼ p(· |Sk, Ak).

Q-learning 36

We asynchronously update the component of the action-value function cor-
responding to (Sk, Ak) so that

qk+1(Sk, Ak) =

k∑
ℓ=0

1 {(Sℓ, Aℓ) = (Sk, Ak)} × B̂∗(Rk, S
′
k)

k∑
ℓ=0

1 {(Sℓ, Aℓ) = (Sk, Ak)}

,

and qk+1(s, a) = qk(s, a) for (s, a) 6= (Sk, Ak), which can be equivalently
written as

qk+1 = (1− αk)⊗ qk + B̂∗(Rk, S
′
k)αk,

where

αk =

(
1 {S0,k = s, A0,k = a}∑k
ℓ=0 1 {S0,ℓ = s, A0,ℓ = a}

)
(s,a)∈S×A

.

Q-learning is said to be an off-policy method, because although a sta-
tionary policy π may be used to generate histories (so that Ak|Sk ∼ π(Sk)
and Sk+1 = S′

k for all k ⩾ 0), that policy may very well be quite different
from the one that is being learnt.

Proposition 4.4.1. Let (Hk)k⩾0 be a family of random histories of length
1+ denoted Hk = (Sk, Ak, Rk, S

′
k). Consider filtration F = (Fk)k⩾0 where

Fk = σ(H0, . . . , Hk−1, Sk, Ak), k ⩾ 0.

We assume that

(i) for all k ⩾ 0, the law of (Rk, S
′
k) conditionnaly on Fk is p(· |Sk, Ak),

(ii) (qk)k⩾0 is a random sequence in RS×A satisfying, for all k ⩾ 0, almost-
surely,

qk+1 = (1− αk)⊗ qk + B̂∗(Rk, S
′
k)αk, k ⩾ 0,

where

αk =

(
1 {Sk = s, Ak = a}∑k
ℓ=0 1 {Sℓ = s, Aℓ = a}

)
(s,a)∈S×A

,

(iii) almost-surely, for all (s, a) ∈ S ×A,

+∞∑
k=0

1 {Sk = s, Ak = a} = +∞.

Then, qk converges almost-surely to q∗ as k → +∞.

Proof. Similar to Proposition 4.3.1.

Policy iteration 37

Remark 4.4.2 (On exploration). The last assumption of the above propo-
sition is extremely important and they are several ways to ensure that all
state-action pairs are updated infinitely often. One possibility is to draw
each pair (Sk, Ak) e.g. uniformly from S × A. This is not always possible,
as the state of the environnement may not be freely chosen: states may
be accessible only through interaction starting from some initial state. In
that case, Sk can only be chosen as given by the last interaction, meaning
Sk = S′

k−1. Another possibility is to follow a policiy which at all states
ensures that each action is selected with positive probability, and then hope
that this would yield an infinite exploration of all state-action pairs.

4.5 Policy iteration
Definition 4.5.1 (Exploring ε-greedy policies). Let ε ⩾ 0. The exploring
ε-greedy policy with respect to an action-value function q ∈ RS×A is the
stationary policy denoted πg,ε [q] defined as:

πg,ε(a|s) =

1− ε

|Argmaxa′∈A q(s, a′)|
+

ε

|A|
, if a ∈ Argmax

a′∈A
q(s, a′)

ε

|A|
otherwise.

Remark 4.5.2. The above (restrictive) definition uniquely defines a policy.
In the case ε = 0, the above may not be a greedy policiy, as the latter are
deterministic by definition.

We now describe a family of stochastic generalized policy iteration meth-
ods, which like their deterministic counterpart, alternate between an approx-
imate policy evaluation step and a policy improvement step.

Let T ∈ {1, 2, . . . }∪{+∞} and (εk)k⩾0 be a positive sequence. For each
k ⩾ 0, we first compute πk = πg,εk [qk]. Then, we choose a state-action pair
(S0,k, A0,k), possibly at random and as a function of previous observations.
Starting from initial state and S0,k and action A0,k, we generate a history
of length T+ using policy πk:

Hk = (S0,k, A0,k, R1,k, . . . , ST,k, AT,k) |S0,k, A0,k ∼ PS0,k,A0,k,πk
.

The action-value function is then asynchronously updated as:

qk+1 = (1− αk)⊗ qk + B̂T (Hk)αk,

αk =

(
1 {S0,k = s, A0,k = a}∑k
ℓ=0 1 {S0,ℓ = s, A0,ℓ = a}

)
(s,a)∈S×A

.

• In the case T = 1, the corresponding algorithm is called SARSA (where
the letters correspond to the use of variables S0,k, A0,k, R1,k, S1,k, A1,k

when computing estimator B̂(Hk)).

Policy iteration 38

• In the case 1 < T < +∞, the algorithms is called T -step SARSA.

• In the case T = +∞, the algorithm is called on-policy Monte-Carlo
control.

The above algorithms are said to be on-policy because the policy used
to generate the histories are close to the policy that is being learnt.

Chapter 5

Value function
approximation

Previous chapters presented tabular methods, meaning that they handled
value functions in RS or RS×A. In the case where the set of states S is huge,
which happens e.g. in cases where the problem has a combinatorial char-
acter, this may be impractical. Then, one possible approach is to solve an
approximate problem by restricting to a parametric class of value functions
{vw}w∈Rp where the dimensionality p of the parameter space is much lower
than the number of states.

The Bellman equations that defined the solutions to policy evaluation
and control in tabular settings are here turned into approximate fixed point
problems, where we seek for e.g. value functions vw within the parametric
class, such that vw ≈ Bπvw or vw ≈ B∗vw.

An important kind of parametrization is linear parametrization where
for a given feature function ϕ : S → Rp, we restrict to value functions of the
form vw(s) = ϕ(s)⊤w, and for which we are able to establish a few theoretical
guarantees. Another important type is neural networks which have led to
many practical successes.

5.1 Projected Bellman equations
Let p ⩾ 1 and V = {vw}w∈Rp be a parametric class of state-value functions
such that w 7→ vw is differentiable. Denote Jac vw the Jacobian matrix with
respect to parameter w ∈ Rp:

Jac vw =

(
∂vw(s)

∂wj

)
s∈S

1⩽j⩽p

.

Let µ ∈ ∆(S) such that µ(s) > 0 for all s ∈ S, denote Mµ = diags∈S(µ(s))

39

Projected Bellman equations 40

and consider norm ℓ2,µ defined on RS as

‖v‖2,µ =
√

v⊤Mµv =

√∑
s∈S

µ(s)v(s)2.

For v0 ∈ RS , denote ProjV,µ v0 the set of minimizers on V of the ℓ2,µ
distance to v0:

ProjV,µ v0 = Argmin
v∈V

‖v − v0‖2,µ .

Proposition 5.1.1. Let v0 ∈ RS . If w ∈ Rp is such that

vw ∈ ProjV,µ v0,

then
(Jac vw)

⊤Mµ(v0 − vw) = 0.

Proof. By definition of the projection, w is a minimizer of w 7→ ‖vw − v0‖22,µ
which is differentiable by composition. Simple computation gives that the
gradient of this function is

(Jac vw)
⊤Mµ(v0 − vw).

Because the domain Rp is an open set, the gradient must vanish at a mini-
mizer, hence the result.

Corollary 5.1.2. Let T ⩾ 1, w ∈ Rp and π a stationary policy. If

vw ∈ ProjV,µB
T
π vw

(
resp. vw ∈ ProjV,µB∗vw

)
, (5.1)

then

(Jac vw)
⊤Mµ(B

T
π vw − vw) = 0,

(
resp. (Jac vw)

⊤Mµ(B∗vw − vw) = 0
)
.

The above fixed point problems (5.1) are difficult to tackle directly for
several reasons. First, existence of a solution is not guaranteed. Even if a so-
lution exists, operators ProjV,µBT

π and ProjV,µB∗ may not be contractions,
and even if they were, they are difficult to compute, because the projection
is itself an optimization problem to be solved.

For policy iteration, the above corollary however suggests an alternative
approach: one can look for zeros of operator w 7→ (Jac vw)

⊤Mµ(B
T
π vw−vw),

or equivalently, fixed points of operator

w 7→ w + α(Jac vw)
⊤Mµ(B

T
π vw − vw),

for some α 6= 0. Although it is unknown a priori for which value of α this
operator is a contraction (if any), it is at least given in explicit form and is
therefore easily computable.

Linear parametrization 41

Therefore, a possible synchronous dynamic programming algorithm for
policy evaluation is given by:

wk+1 = wk + α(Jac vwk
)⊤Mµ(B

T
π vwk

− vwk
), k ⩾ 0, (5.2)

and similarly a synchronous dynamic programming algorithm for control is
given by

wk+1 = wk + α(Jac vwk
)⊤Mµ(B∗vwk

− vwk
), k ⩾ 0. (5.3)

Similar iterations can be defined for action-value functions.
Although the above iterations (5.2) and (5.3) still require the compu-

tation of vectors in RS , this will no longer be the case with sample-based
reinforcement learning variants in Section 5.3.
Remark 5.1.3 (Analogy with gradient-based optimization). This approach
is somewhat analogous to gradient-based optimization, where a gradient
descent iterates operator x 7→ x − α∇f(x) in the hope of finding a zero of
the gradient, even though being a zero of the gradient is only a necessary
condition for optimality. In the convex case however, this approach is better
justified by the fact that zeros of the gradient exactly correspond to global
minimizers.

Example 5.1.4 (Tabular case). The tabular case, meaning when value
functions are not approximated, is a special case corresponding to {vw}w∈RS

and vw = w for all w ∈ RS . Then, the Jacobian matrix is the identity and
choosing µ as the uniform distribution over S and α = |S| makes algorithms
(5.2) and (5.3) boil down to synchronous value iterations from Section 3.1.

5.2 Linear parametrization
Let p ⩾ 1 and ϕ : S → Rp. In this section, we consider V = {vw}w∈RS the
class of linearly parameterized state-value functions associated with feature
function ϕ, where vw : s 7→ ϕ(s)⊤w (w ∈ RS), which is a subspace of RS . For
w ∈ Rp, we alternatively denote Φw = vw ∈ RS , which can be interpreted
as a matrix-vector product with Φ = (ϕ(s)j) s∈S

1⩽j⩽p
∈ RS×p.

Proposition 5.2.1. The projection onto V with respect to ℓ2,µ exists and is
unique, in other words, ProjV,µ v is a singleton for all v ∈ RS .

Proof. Because the norm derives from an inner product, and because V is
closed and convex, the projection exists and is unique.

Proposition 5.2.2. ProjV,µ is 1-Lipschitz continuous for ℓ2,µ.

Linear parametrization 42

Then for a given stationary policy π, the fixed point problem (5.2) can
be equivalently written, in the case T = 1, as

Φw = ProjV,µBπΦw. (5.4)

The following proposition proves that the necessary condition from Proposi-
tion 5.1.1 is in fact a characterization in the linear case, thanks to a convexity
argument.

Proposition 5.2.3. Let π be a stationary policy and w ∈ Rp. Then, Φw =
ProjV,µBπΦw if, and only if

Φ⊤Mµ (BπΦw − Φw) = 0.

Proof. Consider function f(w′) = ‖BπΦw − Φw′‖22,µ, which is convex and
differentiable on Rp. By definition of the projection, Φw = ProjV,µBπΦw is
equivalent to having

w ∈ argmin
w′∈Rp

f(w′),

which by convexity is equivalent to having ∇f(w′) = 0. The result then
follows by deriving an explicit expression for ∇f .

Following a given stationary policy defines a Markov chain on the set of
states S, which is finite. Therefore, there exists a stationary measure. We
are able to establish a convergence guarantee for (5.2) in the case where µ
is such a measure.

Definition 5.2.4. Let π be a stationary policy. A stationary distribution
associated with π is a probability distribution µπ ∈ ∆(S) that satisfies

µπ(s
′) =

∑
(s,a,r′)∈S×A×R

π(a|s)p(r, s′|s, a)µπ(s), s′ ∈ S.

We then denote Mπ = diags∈S(µπ(s)) and ℓ2,π = ℓ2,µπ

Proposition 5.2.5. Let π be a stationary policy and µπ an associated sta-
tionary distribution such that µπ(s) > 0 for all s ∈ S. Operator B

(V,γ)
π is

then γ-Lipschitz continuous with respect to ℓ2,π.

Linear parametrization 43

Proof. Let v, v′ ∈ RS .∥∥Bπv
′ −Bπv

∥∥2
2,π

=
∑
s∈S

µπ(s)
(
(Bπv

′)(s)− (Bπv)(s)
)2

=
∑
s∈S

µπ(s)

 ∑
(a,r′,s′)∈A×R×S

π(a|s)p(r, s′|s, a)γ(v′(s′)− v(s′))

2

⩽
∑
s∈S

µπ(s)
∑

(a,r′,s′)∈A×R×S

π(a|s)p(r, s′|s, a)γ2(v′(s′)− v(s′))2

= γ2
∑
s′∈S

(v′(s′)− v(s′))2
∑

(s,a,r)∈S×A×R

π(a|s)p(r, s′|s, a)µπ(s)

= γ2
∑
s′∈S

(v′(s′)− v(s′))2µπ(s
′)

= γ2
∥∥v′ − v

∥∥2
2,π

,

where we used the definition of a stationary distribution to get the fifth line,
and for the third line Jensen’s inequality together with the fact that for a
given s ∈ S,∑

(a,r′,s′)∈A×R×S

π(a|s)p(r, s′|s, a) =
∑
a∈A

π(a|s)
∑

(r,s′)∈R×S

p(r, s′|s, a)

=
∑
a∈A

π(a|s) = 1.

Proposition 5.2.6. Let π be a stationary policy and µπ an associated sta-
tionary distribution such that µπ(s) > 0 for all s ∈ S. Then, there exists a
unique state-value function v ∈ V such that v = ProjV,µπ

Bπv.

Proof. Combining Propositions 5.2.2 and 5.2.5 by composition yields that
Projϕ,µ ◦B

(V)
π is a γ-Lipschitz continuous operator on V for ℓ2,π. By Theo-

rem 2.2.2, the fixed point problem admits a unique solution.

With the assumptions Proposition 5.2.6, of although operator ProjV,µπ
◦B(V)

π

which defines the fixed point problem (5.4) is a contraction, it is inefficient
to iterate it, as computing ProjV,µ is itself an optimization problem.

Proposition 5.2.7. Let π be a stationary policy and µπ an associated sta-
tionary distribution such that µπ(s) > 0 for all s ∈ S. Then, if KerΦ = 0,
there exists α0 > 0 such that for all 0 < α ⩽ α0, operator

I + αΦ⊤Mπ(Bπ − I)Φ

is β-Lipschitz continuous for some 0 ⩽ β < 1.

Semi-gradient algorithms 44

Remark 5.2.8. Under the assumptions of the above proposition, iterations
(5.2) therefore converge to the unique solution of (5.4) for small enough
step-size α > 0.

5.3 Semi-gradient algorithms
We now define asynchronous reinforcement learning algorithms with para-
metric value-functions that interact with the MDP without prior knowledge
of its dynamic p. The construction is based on action-value counterparts of
the methods defined in Section 5.1 combined with stochastic estimators of
Bellman operators and a new kind of asynchronous updates.

Analogously to Section 5.1, we consider a parametric class of action-
value functions. Let p ⩾ 1 and Q = {qw}w∈Rp a subset of RS×A such that
w 7→ qw is differentiable. For w ∈ Rp, denote

Jac qw =

(
∂qw(s, a)

∂wj

)
(s,a)∈S×A

1⩽j⩽p

and
∇qw(s, a) =

(
∂qw(s, a)

∂wj

)
1⩽j⩽p

, (s, a) ∈ S ×A.

Let T ⩾ 1, µ ∈ ∆(S × A) and Mµ = diag(s,a)∈S×A(µ(s, a)). The following
iterations are the action-value counterparts of (5.2) and (5.3):

wk+1 = wk + α(Jac qwk
)⊤Mµ(B

T
πk
qwk

− qwk
), k ⩾ 1, (5.5)

where (πk)k⩾0 is sequence of stationary strategies and

wk+1 = wk + α(Jac qwk
)⊤Mµ(B∗qwk

− qwk
), k ⩾ 1. (5.6)

For simplicity, we only consider below the case where µ is the uniform dis-
tribution over S × A, which corresponds to Mµ = (|S| · |A|)−1I. We then
remove the factor (|S| · |A|)−1 by incorporating it into step-size α.

In Section 4, the definition of tabular methods could be theoretically seen
as first constructing a stochastic estimator of the operator being iterated
(evaluated at the current iterate), and then considering an asynchronous
update based on this estimator. Although this approach is possible for
the operators being iterated above in (5.6) and (5.6), this would not avoid
manipulating vectors in RS×A, which was the initial motivation for value
function approximation. Instead, we first consider in RS×A a stochastic es-
timator of BT

πk
qwk

−qwk
(resp. B∗qwk

−qwk
) restricted to a single component,

which reduces the computational burden from RS×A to a scalar, and then
apply matrix multiplication by (Jac qwk

)⊤, which reduces to computing a
single vector in Rp because the estimator has a single nonzero component.
This construction is made precise in the following statement.

Semi-gradient algorithms 45

Lemma 5.3.1. Let w ∈ Rp.

(i) Let T ∈ {1, 2, . . . } ∪ {+∞} and π a stationary policy. Let H =
(S0, A0, R1, . . . , ST , AT) be a random history of length T+. If the law
of H conditionally on (S0, A0) is P(T+)

S0,A0,π
, then

E
[(

(B̂T qw)(H)− qw(S0, A0)
)
∇qw(S0, A0)

∣∣∣S0, A0

]
= (Jac qw)

⊤((BT
π qw)(S0, A0)− qw(S0, A0)

)
1(S0,A0),

where 1(S0,A0) = (1 {(s, a) = (S0, A0)})(s,a)∈S×A ∈ RS×A.

(ii) If (S,A,R, S′) is a random history of length 1+ such that (R,S′)|S,A ∼
p(· |S,A), then

E
[(

(B̂∗qw)(R,S′)− qw(S,A)
)
∇qw(S,A)

∣∣∣S,A]
= (Jac qw)

⊤((B∗qw)(S,A)− qw(S,A))1(S,A).

An important feature of the above estimators(
(B̂T qw)(H)− qw(S0, A0)

)
∇qw(S0, A0)

and (
(B̂∗qw)(R,S′)− qw(S,A)

)
∇qw(S,A)

is that they only involve a vector in Rp and no vector in RS×A.

Definition 5.3.2 (Semi-gradient policy evaluation). Let T ∈ {1, 2, . . . } ∪
{+∞}, π a stationary policy, (Hk)k⩾0 a family of random histories of length
T+:

Hk = (S0,k, A0,k, R1,k, . . . , ST,k, AT,k), k ⩾ 0.

Consider filtration F = (Fk)k⩾0 where

Fk = σ(H1, . . . , Hk−1, S0,k, A0,k), k ⩾ 0.

A random sequence (wk)k⩾0 in Rp is a T -step semi-gradient value iteration
for policy evaluation if:

(i) for all k ⩾ 0, the law of random history Hk conditionally on Fk is
P(T+)
S0,k,A0,k,π

,

(ii) for all k ⩾ 0, almost-surely,

wk+1 = wk + αk((B̂
T qwk

)(Hk)− qwk
(S0,k, A0,k))∇qwk

(S0,k, A0,k),

where αk is a Fk-measurable positive random variable.

Semi-gradient algorithms 46

Definition 5.3.3 (Semi-gradient Q-learning). Let (Hk)k⩾0 be a family of
random histories of length 1+:

Hk = (Sk, Ak, Rk, S
′
k), k ⩾ 0.

Consider filtration F = (Fk)k⩾0 where

Fk = σ(H1, . . . , Hk−1, Sk, Ak), k ⩾ 0.

A random sequence (wk)k⩾0 in Rp is a semi-gradient Q-learning iteration if:

(i) for all k ⩾ 0, the law of (Rk, S
′
k) conditionally on Fk is p(· |Sk, Ak),

(ii) for all k ⩾ 0, almost-surely,

wk+1 = wk + αk((B̂∗qwk
)(Rk, S

′
k)− qwk

(S0,k, A0,k))∇qwk
(S0,k, A0,k),

where αk is a Fk-measurable positive random variable.

Remark 5.3.4 (On exploration). There is no assumption on the choice of
(Sk, Ak) in the above definition. However, similarly to tabular methods,
exploration is an important issue, and must be addressed to obtain satisfac-
tory results. Even if S and/or A are huge and all values (s, a) ∈ S×A can’t
then be explored, the method should ensure that sufficient variety of values
are encountered. If the algorithm has the possibility to freely choose states,
new state-action pairs can be e.g. drawn according to a given distribution.
Otherwise, the method should merely follow the actual interaction with the
environment, by choosing actions according to e.g. an ε-greedy policy with
respect to the current estimate qwk

.

Definition 5.3.5 (Semi-gradient (T -step) SARSA). Let T ∈ {1, 2, . . . } ∪
{+∞}, (αk)k⩾0 and (εk)k⩾0 a positive random sequences, and (Hk)k⩾0 a
family of random histories of length T+:

Hk = (S0,k, A0,k, R1,k, . . . , ST,k, AT,k), k ⩾ 0.

Consider filtration F = (Fk)k⩾0 where

Fk = σ(H1, . . . , Hk−1, S0,k, A0,k), k ⩾ 0.

A random sequence (wk)k⩾0 in RS×A is a T -step semi-gradient SARSA it-
eration if:

(i) for all k ⩾ 0, αk and εk are Fk-measurable,

(ii) for all k ⩾ 0, the law of random history Hk conditionally on Fk is
P(T+)
S0,k,A0,k,πk

, where πk = πg,εk [qwk
],

Semi-gradient algorithms 47

(iii) for all k ⩾ 0, almost-surely,

wk+1 = wk + αk((B̂
T qwk

)(Hk)− qwk
(S0,k, A0,k))∇qwk

(S0,k, A0,k),

In the case T = +∞, the method is instead called Semi-gradient Monte-
Carlo control.

Remark 5.3.6 (Linear case). In the case of a linear parametric class pre-
sented in Section 5.2, ∇qwk

(S0,k, A0,k) in the above definition boils down to
ϕ(S0,k, A0,k).

Chapter 6

Policy gradient methods

This chapter presents a different reinforcement learning approach where a
hopefully good policy is obtained directly, without being derived from a value
function. More specifically, we focus on methods that consider a parametric
class of policies that are differentiable with respect to the parameter, in
order to apply gradient-based optimization methods.

6.1 Policy parametrization
Let d ⩾ 1 and {πθ}θ∈Rd a parametric class of stationary policies such that
θ 7→ πθ is differentiable and for all (s, a) ∈ S ×A,

πθ(a|s) > 0.

We denote ∇θ the gradient with respect to the policy parameter θ ∈ Rd (to
avoid confusion with the parametrization w ∈ Rp of value functions, when
both are considered as in Section 6.3 below).

Example 6.1.1 (Softmax parametrization). A popular kind of parametric
policies that ensure that all probabilities πθ(a|s) are positive is given by

πθ(a|s) =
exp (hθ(s, a))∑

a′∈A exp (hθ(s, a′))
, s ∈ S, a ∈ A,

where hθ : S × A → R is such that θ 7→ hθ(s, a) is differentiable for all
(s, a) ∈ S ×A and can e.g. be a linear function, a neural network, etc.

Let µ ∈ ∆(S) be given. The approach aims at maximizing the following
objective function

θ 7→ ES∼µ [vπθ
(S)] (6.1)

with stochastic gradient descent (SGD) (or rather ascent) or one its variants
e.g. RMSprop, Adam, etc. The following policy gradient theorem provides
the expression of a stochastic estimator of the gradient of the above objective
function, to be used in such an optimization algorithm.

48

Policy parametrization 49

Theorem 6.1.2. We assume that map θ 7→ πθ is of class C1. Then, the
objective function (6.1) is differentiable. Moreover, if (bt)t⩾0 a bounded se-
quence of functions in RS , then for all θ ∈ Rd,

∇θES∼µ [vπθ
(S)] = Eµ,πθ

[
+∞∑
t=0

γt (qπθ
(St, At)− bt(St))∇θ log πθ(At|St)

]
.

Proof.

∇θES∼µ [vπθ
(S)] = ∇θEµ,πθ

[vπθ
(S0)] = ∇θEµ,πθ

[qπθ
(S0, A0)]

= Eµ,πθ

[
∇θ

∑
a∈A

πθ(a|S0)qπθ
(S0, a)

]

= Eµ,πθ

[∑
a∈A

∇θπθ(a|S0)qπθ
(S0, a) + πθ∇θqπθ

(S0, a)

]

= Eµ,πθ

[∑
a∈A

∇θπθ(a|S0)qπθ
(S0, a)

+∇θ

∑
(a,r,s′)∈A×R×S

πθ(a|S0)p(s
′, r|s, a)(r + γvπθ

(s′))

= Eµ,πθ

[∑
a∈A

∇θπθ(a|S0)qπθ
(S0, a)

]
+ γEµ,πθ

[∇θvπθ
(S1)]

= Eµ,πθ

[∑
a∈A

(∇θπθ(a|S0)qπθ
(S0, a) + γ∇θπθ(a|S1)qπθ

(S1, a))

]
+ γ2Eµ,πθ

[∇θvπθ
(S2)]

= · · · = Eµ,πθ

[
+∞∑
t=0

γt
∑
a∈A

∇θπθ(a|St)qπθ
(St, a)

]

= Eµ,πθ

[
+∞∑
t=0

γtπθ(a|St)
∇θπθ(a|St)

πθ(a|St)
qπθ

(St, a)

]

= Eµ,πθ

[
+∞∑
t=0

γt
∇θπθ(At|St)

πθ(At|St)
qπθ

(St, At)

]
.

Besides,

Eµ,πθ

[
+∞∑
t=0

γtb(St)
∇πθ(At|St)

π(At|St)

]
= Eµ,πθ

[
+∞∑
t=0

γtb(St)∇θ

∑
a∈A

πθ(a|St)

]

= Eµ,πθ

[
+∞∑
t=0

γtb(St)∇θ(1)

]
,

REINFORCE 50

and the result follows because
∑

a∈A πθ(a|St) = 1 and therefore its gradient
is zero.

Remark 6.1.3 (Baseline functions). Remarkably, the above identity holds for
any functions bt, which are called baseline functions. The choice of baseline
functions affects the variance of the estimator, as will be further discussed
below.

6.2 REINFORCE
The REINFORCE algorithm simply applies the stochastic estimator of the
gradient suggested by Theorem 6.1.2. We first present the basic version with
no baseline.

Let (Hk)k⩾0 be a family of random infinite histories:

Hk = (S0,k, A0,k, R1,k, . . .), k ⩾ 0,

and (θk)k⩾0 a random sequence of parameters in Rd. We assume that for all
k ⩾ 0, the law of Hk conditionally on H0, . . . , Hk−1 is Pµ,πθk

. Then, (θk)k⩾0

is a REINFORCE iteration if:

θk+1 = θk + α

+∞∑
t=0

γt

(
+∞∑
t′=1

γt
′−1Rt+t′,k

)
∇θ log πθk(At,k|St,k), k ⩾ 0,

where α > 0 is the step-size (aka learning rate).
Remark 6.2.1. The above method requires the computation of infinite dis-
counted rewards, which in practice can only be computed exactly for episodic
MDPs (i.e. where a terminal state with zero future rewards is necessarily
reached). For general MDPs, the above iteration can be approximated by
truncation.

Theorem 6.1.2 also allows the use of a baseline, which can reduce the
variance of the stochastic estimator of the gradient; ideally, the baseline
bt(St) should be, conditionally on St, the expectation of qπθ

(St, At), in other
words vπθ

(St). Since the latter is unknown, one possibility is to estimate it
using a parametric class of state-value function and a semi-gradient iteration.

Let p ⩾ 1 and {vw}w∈Rp a parametric family of state-value functions
such that w 7→ vw is differentiable. For all k ⩾ 0, we can consider the
following REINFORCE iteration with baseline:

Gt,k =
+∞∑
t′=1

γt
′−1Rt+t′,k

θk+1 = θk + α

+∞∑
t=0

γt (Gt,k − vwk
(St))∇θ log πθk(At,k|St,k),

An actor-critic algorithm 51

wk+1 = wk + β
+∞∑
t=0

(Gt,k − vwk
(St))∇wvwk

(St),

where α > 0 and β > 0 are step-sizes.

6.3 An actor-critic algorithm
We present present a variant of the above REINFORCE algorithm with
baseline, where the quantity qπθ

(St, At) from Theorem 6.1.2 is no longer es-
timated with a corresponding discounted sum of rewards, but approximated
with Rt+1 + γvw(St+1), where w is the current estimate parameter. Then,
updates can be performed after each step (without waiting the end of the
episode). We write it for episodic problems.

Definition 6.3.1. A state s ∈ S is terminal if for all a ∈ A, p(· |s, a) =
δ(0,s). We denote S∗ the set of terminal states.

Let (Hk)k⩾0 be a family of random infinite histories:

Hk = (S0,k, A0,k, R1,k, . . .), k ⩾ 0,

and (θt,k)t,k⩾0 and (wt,k)t,k⩾0 random families of parameters in Rd and Rp

respectively. We assume that for all k ⩾ 0 and t ⩾ 0, the law of At,k

conditionally on H0, . . . , Hk−1, S0,k, A0,k, R1,k, . . . , St,k is πθt,k(· |St,k). We
assume that there exists a random sequence of integers (T (k))k⩾0 such that
ST (k)+1,k ∈ S∗ almost-surely for all k ⩾ 0.

For all k ⩾ 0 and 0 ⩽ t ⩽ T (k), we consider

∆t,k = Rt+1,k + γvwt,k
(St+1,k)− vwt,k

(St,k)

θt+1,k = θt,k + αγt∆t,k∇θ log πθt,k(At,k|St,k),

wt+1,k = wt,k + β∆t,k∇wvwt,k
(St,k),

θ0,k+1 = θT (k)+1,k and w0,k+1 = wT (k)+1,k.

where α > 0 and β > 0 are step-sizes.

	1 Markov decision processes
	1.1 Formal definition
	1.2 Policies
	1.3 Induced probability distributions over histories
	1.4 Value functions

	2 Bellman operators & optimality
	2.1 Bellman operators
	2.2 Bellman equations
	2.3 Greedy policies
	2.4 Optimal value functions & policies

	3 Dynamic programming
	3.1 Value iteration
	3.2 Policy iteration
	3.3 Asynchronous fixed point iterations
	3.4 Asynchronous value iterations

	4 Tabular reinforcement learning
	4.1 Stochastic asynchronous fixed point iterations
	4.2 Stochastic estimators of Bellman operators
	4.3 Policy evaluation
	4.4 Q-learning
	4.5 Policy iteration

	5 Value function approximation
	5.1 Projected Bellman equations
	5.2 Linear parametrization
	5.3 Semi-gradient algorithms

	6 Policy gradient methods
	6.1 Policy parametrization
	6.2 REINFORCE
	6.3 An actor-critic algorithm

