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RESUME

Le manuscrit se divise en deux parties. La premicre est constituée des chapitres I
4 IV et propose une présentation unifiée de nombreux résultats connus ainsi que de
quelques éléments nouveaux.

On présente dans le Chapitre I le probleme donline linear optimization, puis on
construit les stratégies de descente miroir avec parameétres variables pour la minimi-
sation du regret, et on ¢établit dans le Théoréme 1.3.1 une borne générale sur le re-
gret garantie par ces stratégies. Ce résultat est fondamental car la quasi-totalité des
résultats des quatre premiers chapitres en seront des corollaires. On traite ensuite l'ex-
tension aux pertes convexes, puis lobtention d’algorithmes d'optimisation convexe a
partir des stratégies minimisant le regret.

Le Chapitre II se concentre sur le cas ou le joueur dispose d’'un ensemble fini dans
lequel il peut choisir ses actions de fagon aléatoire. Les stratégies du Chapitre I sont
aisément transposées dans ce cadre, et on obtient également des garanties presque-
stires d’'une part, et avec grande probabilité d’autre part. Sont ensuite passées en re-
vue quelques stratégies connues : I'Exponential Weights Algorithm, le Smooth Fictitious
Play, le Vanishingly Smooth Fiftitious Play, qui apparaissent toutes comme des cas par-
ticuliers des stratégies construites au Chapitre I. En fin de chapitre, on mentionne le
probleme de bandit 4 plusieurs bras, ot le joueur n'observe que le paiement de I'action
qu’il a jouée, et on étudie lalgorithme EXP3 qui est une adaptation de 'Exponential
Weights Algorithm dans ce cadre.

Le Chapitre I1I est consacré 4 la classe de stratégies appelée Follow the Perturbed
Leader, qui est définie A l'aide de perturbations aléatoires. Un récent survey [ALT16]
mentionne le fait que ces stratégies, bien que définies de facon différente,
appartiennent a la famille de descente miroir du Chapitre I. On donne une
démonstration détaillée de ce résultat.

Le Chapitre IV a pour but la construction de stratégies de descente miroir pour
Vapprochabilité de Blackwell. On étend une approche proposée par [ABH11] qui per-
met de transformer une stratégie minimisant le regret en une stratégie d’approchabi-
lité. Notre approche est plus générale car elle permet d'obtenir des bornes sur une tres
large classe de quantités mesurant I'¢loignement a I'ensemble cible, et non pas seule-
ment sur la digtance euclidienne a 'ensemble cible. Le caraétére unificateur de cette



démarche et ensuite illustrée par la construction de stratégies optimales pour le pro-
bleme donline combinatorial optimization et la minimisation du regrez interne/swap.
Par ailleurs, on démontre que la stratégie de Backwell peut étre vue comme un cas
particulier de descente miroir.

La seconde partie est constituée des quatre articles suivants, qui ont été rédigés
pendant la these.

Le Chapitre V est tiré de larticle [KP16b] et étudie le probleme de la minimisation
du regret dans le cas ot le joueur possede un ensemble fini d’actions, et avec Ihypo-
these supplémentaire que les vecteurs de paiement possedent au plus s composantes
non-nulles. On ¢établit, en information compléte, que la borne optimale sur le regret

est de lordre de /T logs (ot T est le nombre d¢tapes) lorsque les paiements sont des

gains (cest-a-dire lorsqu’ils sont positifs), et de lordre de 1/ Ts 105 4 (ot1d est le nombre
d’a&ions) lorsqu’il s'agit de pertes (i.e. négatifs). On met ainsi en évidence une diffé-
rence fondamentale entre les gains et les pertes. Dans le cadre bandit, on établit que la
borne optimale pour les pertes est de lordre de VTs 4 un faceur logarithmique pres.

Le Chapitre VI est issu de larticle [KP16a] et porte sur lapprochabilité de Bla-
ckwell avec observations partielles, cest-a-dire que le joueur observe seulement des si-
gnaux aléatoires. On construit des stratégies garantissant des vitesses de convergence
de l'ordre de O(T~2) dans le cas de signaux dont les lois ne dépendent pas de l'ac-
tion du joueur, et de l'ordre de O(T~?) dans le cas général. Cela établit qu'il s'agit
la des vitesses optimales car il est connu quon ne peut les améliorer sans hypothese
supplémentaire sur l'ensemble cible ou la §tructure des signaux.

Le Chapitre VII et tiré de larticle [KM14] et définit les stratégies de descente
miroir en temps continu. On établit pour ces derniers une propriété de non-regret.
On effetue ensuite une comparaison entre le temps continu et le temps discret. Cela
offre une interprétation des deux termes qui constituent la borne sur le regret en temps
discret : I'un vient de la propriété en temps continu, l'autre de la comparaison entre le
temps continu et le temps discret.

Enfin, le Chapitre VIII estindépendant et est issu de l'article [Kwo14]. Ony établit
une borne universelle sur les variations des fon&ions convexes bornées. On obtient
en corollaire que toute fon&ion convexe bornée et lipschitzienne par rapport a la
métrique de Hilbert.

[KP16b] Joon Kwon and Vianney Perchet. Gains and losses are fundamentally dif-
ferent in regret minimization : the sparse case. arXiv :1511.08405, 2016 (d pa-
raitre dans Journal of Machine Learning Research)

[KP16a] Joon Kwon and Vianney Perchet. Blackwell approachability with partial
monitoring : Optimal convergence rates. 2016 (e préparation)



[KM14] Joon Kwon and Panayotis Mertikopoulos. A continuous-time approach to
online optimization. arXiv :1401.6956, 2014 (en préparation)

[Kwo14] Joon Kwon. A universal bound on the variations of bounded convex func-
tions. arXiv :1401.2104, 2014 (4 paraitre dans Journal of Convex Analysis)






ABSTRACT

The manuscript is divided in two parts. The first consists in Chapters I to IV and
offers a unified presentation of numerous known results as well as some new elements.

We present in Chapter I the online linear optimization problem, then construct
Mirror Descent strategies with varying parameters for regret minimization, and es-
tablish in Theorem 1.3.1 a general bound on the regret guaranteed by the strategies.
This result is fundamental, as most of the results from the first four chapters will be
obtained as corollaries. We then deal with the extension to convex losses, and with
the derivation of convex optimization algorithms from regret minimizing strategies.

Chapter II focuses on the case where the Decision Maker has a finite set from
which he can pick his actions at random. The strategies from Chapter I are easily
transposed to this framework and we also obtain high-probability and almost-sure
guarantees. We then review a few known strategies: Exponential Weights Algorithm,
Smooth Fictitious Play, and Vanishingly Smooth Fictitious Play, which all appear as pe-
cial cases of the étrategies constructed in Chapter I. At the end of the chapter, we
mention the multi-armed bandit problem, where the Decision Maker only observes
the payoft of the action he has played. We study the EXP3 strategy, which is an adap-
tation of the Exponential Weights Algorithm to this setting.

Chapter III is dedicated to the family of strategies called Follow the Perturbed
Leader, which is defined using random perturbations. A recent survey [ALT16]
mentions the fact that those strategies, although defined differently, actually belong
to the family of Mirror Descent strategies from Chapter 1. We give a detailed proof
of this result.

Chapter IV aims at constructing Mirror Descent strategies for Blackwell’s
approachability. We extend an approach proposed by [ABH11] that turns a regret
minimizing strategy into an approachability strategy. Our construction is more
general, as it provides bounds for a very large class of distance-like quantities which
measure the “distance” to the target set and not only on the Euclidean distance to
the target set. The unifying character of this approach is then illustrated by the
constru&tion of optimal strategies for online combinatorial optimization and
internal/swap regret minimization. Besides, we prove that Blackwell’s strategy can be
seen as a $pecial case of Mirror Descent.

11
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The second part of the manuscript contains the following four papers.

Chapter V is from [KP16b] and studies the regret minimization problem in the
case where the Decision Maker has a finite set of actions, with the additional assump-
tion that payoff ve&tors have at most s nonzero components. We establish, in the full
information setting, that the minimax regret is of order /T log s (where T is the num-

ber of §teps) when payoffs are gains (i.c nonnegative), and of order 1/ T’ lof;d (where d

is the number of actions) when the payoffs are losses (i.e. nonpositive). This demon-
strates a fundamental difference between gains and losses. In the bandit setting, we

prove that the minimax regret for losses is of order VTs up to a logarithmic factor.

Chapter VI is extracted from [KP16a] and deals with Blackwell’s approachability
with partial monitoring, meaning that the Decision Maker only observes random sig-
nals. We construt strategies which guarantee convergence rates of order O(T~/?)
in the case where the signal does not depend on the action of the Decision Maker,
and of order O(T~Y/3) in the case of general signals. This establishes the optimal rates
in those two cases, as the above rates are known to be unimprovable without further
assumption on the target set or the signalling structure.

Chapter VII comes from [KM14] and defines Mirror Descent strategies in con-
tinuous time. We prove that they satisfy a regret minimization property. We then
conduct a comparison between continuous and discrete time. This offers an inter-
pretation of the terms found in the regret bounds in discrete time: one is from the
continuous time property, and the other comes from the comparison between con-
tinuous and discrete time.

Finally, Chapter VIII is independent and is from [Kwol4]. We establish a uni-
versal bound on the variations of bounded convex fun&ion. As a byproduct, we ob-
tain that every bounded convex fun&ion is Lipschitz continuous with respect to the
Hilbert metric.

[KP16b] Joon Kwon and Vianney Perchet. Gains and losses are fundamentally dif-
Y y
ferent in regret minimization: the $parse case. arXiv:1511.08405, 2016 (to ap-
pear in Journal of Machine Learning Research)

[KP16a] Joon Kwon and Vianney Perchet. Blackwell approachability with partial
monitoring: Optimal convergence rates. 2016 (i preparation)

[KM14] Joon Kwon and Panayotis Mertikopoulos. A continuous-time approach to
online optimization. arXiv:1401.6956, 2014 (in preparation)

[Kwo14] Joon Kwon. A universal bound on the variations of bounded convex func-
tions. arXiv:1401.2104, 2014 (to appear in Journal of Convex Analysis)
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INTRODUCTION

Online learning

Online learning deals with making decisions sequentially with the goal of obtain-
ing good overall results. Such problems have originated and have been studied in
many different fields such as economics, computer science, statistics and information
theory. In recent years, the increase of computing power allowed the use of online
learning algorithms in countless applications: advertisement placement, web rank-
ing, pam filtering, energy consumption forecast, to name a few. This has naturally
boosted the development of the involved mathematical theories.

Online learning can be modeled as a setting where a Decision Maker faces Nature
repeatedly, and in which information about his performance and the changing state
of Nature is revealed throughout the play. The Decision Maker is to use the infor-
mation he has obtained in order to make better decisions in the future. Therefore,
an important characteristic of an online learning problem is the type of feedback the
Decision Maker has, in other words, the amount of information available to him. For
instance, in the full information setting, the Decision Maker is aware of everything that
has happened in the past; in the partial monitoring setting, he only observes, after each
stage, a random signal whose law depends on his decision and the state of Nature; and
in the bandit setting, he only observes the payoff he has obtained.

Concerning the behavior of Nature, we can distinguish two main types of assump-
tions. In sZochastic settings, the successive states of Nature are drawn according to some
fixed probability law, whereas in the adversarial setting, no such assumption is made
and Nature is even allowed to choose its states strategically, in response to the previ-
ous choices of the Decision Maker. In the latter setting, the Decision Maker is aiming
at obtaining worst-case guarantees. This thesis studies adversarial online problems.

To measure the performance of the Decision Maker, a quantity to minimize or a
criterion to satisfy has to be specified. We present below two of those: regret min-
imization and approachability. Both are very general frameworks which have been
successfully applied to a variety of problems.

17



18 INTRODUCTION

Regret minimization

We present the adversarial regret minimization problem which has been used as a
unifying framework for the study of many online learning problems: pattern recogni-
tion, portfolio management, routing, ranking, principal component analysis, matrix
learning, classification, regression, €tc. Important surveys on the topic are [CBLO6,
RT09, Haz12, BCB12, SS11].

We first consider the problem where the Decision Maker has a finite set of acZions
g ={1,...,d}. Ateach staget > 1, the Decision Maker chooses an action i, € 7,

possibly at random, then observes a payoff vector u, € [—1,1]%, and finally gets a scalar
payoff equal to u;’. We assume Nature to be adversarial, and the Decision Maker is
therefore aiming at obtaining some guarantee against any possible sequence of payoff
ve&ors (u,),5; in [1, 1]4. Hannan [Han57] introduced the notion of regret, defined
as

T T

H 13

Rt = max E u, — E u',
€73 =1

which compares the cumulative payoft Z;rzl ui’ obtained by the Decision Maker to

the cumulative payoff max;,, Zthl u: he could have obtained by playing the best fixed
action in hindsight. Hannan [Han57] established the existence of strategies for the
Decision Maker which guarantee that the average regret R is asymptotically non-
positive. This problem is also called prediction with expert advice because it models the
following situation. Imagine 7 = {1, ..., d} as a set of experts. At each staget > 1,
the Decision Maker has to make a decision and each expert give a piece of advice as
to which decision to make. The Decision Maker must then choose the expert i, to
follow. Then, the vecor u, € R% is observed, where #: is the payoff obtained by ex-

pert i. The payoff obtained by the Decision Maker is therefore #,. The regret then
corresponds to the difference between the cumulative payoff of the Decision Maker
and the cumulative payoff obtained by the best expert. The Decision Maker having a
strategy which makes sure that the average regret goes to zero means that he is able to
perform, asymptotically and in average, as well as any expert.

The theory of regret minimization has since been refined and developed in a num-
ber of ways—see e.g. [FV97, HMCO00, FL99, Lch03]. Animportant dire¢tion was the
study of the best possible guarantee on the expected regret, in other words the study
of the following quantity:

infsupE [Ry],

where the infimum is taken over all possible strategies of the Decision Maker, the
supremum over all sequences (#,),-, of payoff ve&ors in [1, 1]¢, and the expectation
with respect to the randomization introduced by the Decision Maker in choosing
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its a&tions 7,. This quantity has been established [CB97, ACBGO02] to be of order
\/ T logd, where T is the number of stages and d the number of actions.

An interesting variant is the online convex optimization problem [Gor99, KW95,
KW97, KW01, Zin03]: the Decision Maker chooses actions z, in a convex compact

set Z C R?, and Nature chooses loss fun&ions ¢, : & — R. The regret is then defined
by

T T
Rr = Z 0(z,) — migg Z 0 (z)
=1 R

The special case where the loss functions are linear is called online linear optimization
and is often written with the help of payoft vectors (,),-:

—~

T
Ry = maxz (u,|z) — Z (u,|z,) . (%)

€L 5 =1

This will be the base model upon which Part I of the manuscript will be buil.

Until now, we have assumed that the Decision Maker observes all previous payoft
ve&ors (or loss fun&ions), in other words, that he has a full information feedback. The
problems in which the Decision Maker only observes the payoff (or the loss) that he
obtains are called bandir problems. The case where the set of actionsis 7 = {1, ..., d}
is called the adversarial multi-armed bandit problem, for which the minimax regret is
known to be of order v'Td [AB09, ACBFS02]. The bandits settings for online con-
vex/linear optimization has also attra¢ted much attention [AK04, FKMO05, DHO6,
BDH"08] and we refer to [BCB12] for a recent survey.

Approachability

Blackwell [Bla54, Bla56] considered a model of repeated games between a Deci-
sion Maker and Nature with ve¢tor-valued payoffs. He studied the sets to which the
Decision Maker can make sure his average payoff converges. Such sets are said to be
approachable by the Decision Maker. Specifically, let 7 and ¥ be finite action sets for
the Decision Maker and Nature respectively,

2 xt = 1}
i€y

the set of probability distributions on 7, and g : 7 x ¥ — R? a ve&tor-valued payoff
funcion. For a given (closed) target set € C RY, the question is whether there exists

A7) = {x = (')icg €RY



20 INTRODUCTION

Figure 1. — The hyperplane (y — y,| - — o) = 0 separates y and the set of all pos-
sible expected vector payoffs when the Decision Maker plays at random according to
probability ditribution x(y) (represented in dark gray).

a strategy for the Decision Maker which guarantees that

1 T
f 2g<it’ ]r) — &,
=1

T—+co

where 7, and j, denote the a&tions chosen at time # by the Decision Maker and Nature,
respectively.

Blackwell provided the following sufficient condition for a closed set € C R% to
be approachable: for all y € R?, there exists an Fuclidean proje&ion y, of y onto €,
and a probability distribution x(y) € A(7) such that for all actions j € ¥ of Nature,

(Esxy 1200 )] = 20y = 20) <O.

The above inequality is represented in Figure 1. € is then said to be a B-set. When
this is the case, the Blackwell strategy is defined as

1¢ . ;
Yo = x (z 3. g m) then draw .y ~ x,.1
s=1

which means thataction, ,; € 7 is drawn according to probability distribution x, ,; €
A(7). This $trategy guarantees the convergence of the average payoff 1 E; (i, jy,)
to the set €. Later, [Spi02] proved that a closed set is approachable if and only if it
contains a B-set. In the case of a convex set €, Blackwell proved that it is approachable
ifand onlyifitisa B-set, which is then also equivalent to the following dual condition:

Vye A(F), 3x e A(T), Eiw (g, j)] € €.
J~y
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This theory turned out to be a powerful tool for constructing strategies for on-
line learning, statistics and game theory. Let us mention a few applications. Many
variants of the regret minimization problem can be reformulated as an approacha-
bility problem, and conversely, regret minimization strategy can be turned into ap-
proachability strategy. Blackwell [Bla54] was already aware of this fundamental link
between regret and approachability, which has since been much developed—see e.g.
[HMCO1, Per10, MPS11, ABH11, BMS14, Per15]. The statistical problem of cali-
bration has also proved to be related to approachability [Fos99, MS10, Per10,RST11,
ABH11, Per15]. We refer to [Per14] for a comprehensive survey on the relations be-
tween regret, calibration and approachability. Finally, Blackwell’s theory has been
applied to the construction of optimal strategies in zero-sum repeated games with in-
complete information [Koh75, AM85].

Various techniques have been developed for constructing and analyzing approach-
ability trategies. Asshown above, Blackwell’s initial approach was based on Euclidean
projections. A potential-based approach was proposed to provide a wider and more
flexible family of strategies [HMCO01, CBLO03, Per15]. In a somewhat related spirit,
and building upon an approach with convex cones introduced in [ABH11], we define
in Chapter IV a family of Mirror Descent strategies for approachability.

The approachability problem has also been studied in the partial monitoring set-
ting [Per11a, MPS11, PQ14, MPS14]. In Chapter VI we construct strategies which
achieve optimal convergence rates.

On the origins of Mirror Descent

In this se¢tion, we quickly present the succession of ideas which have led to the
Mirror Descent algorithms for convex optimization and regret minimization. We
do not aim at being comprehensive nor completely rigorous. We refer to [CBLO06,
Se&ion 11.6], [Haz12], and to [Bub15] for a recent survey.

We first consider the unconstrained problem of optimizing a convex funcion f :
R4 — R which we assume to be differentiable:

min f(x).
x€R

We shall focus on the construction of algorithms based on first-order oracles—in
other words, algorithms which have access to the gradient V f(x) at any point x.
Gradient Descent

The initial idea is to adapt the continuous-time gradient flow

x=—V[f(x).
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Figure 2. — The Proximal algorithm on the left and Gradient Descent on the right

There are two basic discretizations. The first is the proximal algorithm, which starts
at some initial point x; and iterates as

Xppp = Xp — thf<xt+1)’ (1)

where v, is a $Zep-size. The algorithm is said to be implicit because one has to find a
point x,; satisfying the above equality in which x, | implicitly appears in V f(x,).
One can see that the above relation can be rewritten

1
sy = argmax{ f(x) + 3 2. @)
t

xeR?

Indeed, the fun&tion x F— f(x)+ % [l — xt||§ havingat point x, ,; a gradient equal to

zero is equivalent to Equation (1). The above expression (2) guarantees the existence
of x,,; and provides the following interpretation: point x,,; corresponds to a trade-
off between minimizing f and being close to the previous iterate x,. The algorithm
can also be written in a variational form: x,,; is characterized by

<thf<xt+1> + X — x| x — xt+l> >0, VxeR (3)

The second discretization is the Euler scheme, also called the gradient descent algo-
rithm:

X1 =% — 7, Vf(x,), (4)

which is said to be explicit because the point x,; follows from a dire&t computation
involving x, and V f (x,), which are known to the algorithm. It can be rewritten

411 = argmin {<Vf<xt>|x> ; % Jx xtn;}, (5)

xeR?
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which can be seen as a modification of the proximal algorithm (2) where f(x) has
been replaced by its linearization at x,. Its variational form is

V.V F(x,) + %01 — X)X —x,.4) >0, VxeRY (6)

Projected Gradient Descent

We now turn to the constrained problem

min f(x),

xeX

where X is a convex compac subset of R?. The gradient descent algorithm (4) can
be adapted for this problem by performing a Euclidean proje&tion onto X after each
gradient descent step, in order to have all iterates x, in the set X. This gives the projected
gradient descent algorithm [Gol64, LP66]:

Xp41 = P;Oj {x, — thf(xt>} > (7>
which can rewritten as
. 1 2
s = argmin (7 (s)15) + 3= w2 (8
xeX 3

and has variational chara&erization:
v Vflx) +xn—xlx—x,) 20, VxeX, x,€X (9)

Typically, when the gradients of f are assumed to be bounded by M > 0 with re-
spectto |-, (in other words, if f is M-Lipschitz continuous with respect to | - I,)s

the above algorithm with constant step-size y, = |X],/ MVT provides a M/V/T-

optimal solution after T steps. When the gradients are bounded by some other norm,
the above till applies but the dimension d of the space appears in the bound. For in-
stance, if the gradients are bounded by M with respect to | - ||, due to the comparison
between the norms, the above algorithm provides after T teps a M/d /T-optimal
solution. Then, the following question arises: if the gradients are bounded by some
other norm than | - ||, is it possible to modify the algorithm in order to get a guaran-
tee that has a better dependency in the dimension? This motivates the introduction
of Mirror Descent algorithms.
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Figure 3. — Projected Subgradient algorithm

Greedy Mirror Descent

Let F : R — R be a differentiable convex fun&ion such that VF : R4 — R4
is a bijection. Denote F* its Legendre—Fenchel transform. Then, one can see that
(VF)™! = VF*. We introduce the Bregman divergence associated with F:

Dp(x’, x) = F(x') — F(x) — (VE(x)|x’ — x), x,x" € R?,

which is a quadratic quantity that can be interpreted as a generalized distance. It pro-
vides a new geometry which will replace the Euclidean stru&ture used for the Pro-

je¢ted Gradient Descent (7). The case of the Euclidean distance can be recovered by
considering F(x) = 1 ||x]|§ which gives Dp(x’, x) = 1 ||x" — xH; The Greedy Mirror
Descent algorithm [NY83, BT03] is defined by replacing in the Projected Gradient
Descent algorithm (8) the Euclidean distance § [|x — xtﬂi by the Bregman divergence

Dg(x, x,):

: 1
oy = argmin { (V(s)}x) + 7 Drsx) | (10)
xeX Yt
This algorithm can also be written with the help of a gradient descent and a projection:
%, = argmin Dg (x, VF* (VF(x,) — 7,V f(x,))) . (11)
xeX

The above expression of x,,; can be decomposed and interpreted as follows. Since
we have forgotten about the Euclidean structure, point x, belongs to the primal $pace
whereas gradient V f(x,) lives in the dual space. Therefore, we cannot directly per-
form the gradient descent x, — v,V f(x,) as in (7). Instead, we first use the map VF
to get from x, in the primal $pace to VF(x,) in the dual $pace, and perform the gradi-
ent descent there: VF(x,) — v,V f(x,). We then use the inverse map VF* = (VF)~!
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primal space dual space

VEFE

VF(x,)

VF(xt> - thf(xt)
Figure 4, — Greedy Mirror Descent

to come back to the primal space: VF*(VF(x,) — v,V f(x,)). Since this point may
not belong to the set X, we perform a projection with respet to the Bregman diver-
gence D, and we get the expression of x,; from (11). Let us mention the variational
expression of the algorithm, which is much more handy for analysis

1,V f(x,)+ VFE(x,.) — VE(x,)|[x —x,,1) >0, VvVxeX, x,,€X. (12)

As initially wished, the Greedy Mirror Descent algorithm can adapt to different
assumptions about the gradients of the objective function f. If f is assumed to be M-
Lipschitz continuous with respe& to a norm | - |, the choice of a fun&ion F which is
K-strongly convex with respect to | - || guarantees that the associated algorithm with

constant step-size y, = VLK/MVT gives a M/L/KT-optimal solution after T
steps, where L = max, .y {F(x) — F(x")}.

There also exists a proximal version of Greedy Mirror Descent algorithm. It is
called the Bregman Proximal Minimization algorithm and was introduced by [CZ92].
It is obtained by replacing in the proximal algorithm (2) the Euclidean distance by a
Bregman divergence:

X,,] = argmin {f(x) + lDF(x, xt)} :

xeX Ve

Lazy Mirror Descent

We now introduce a variant of the Greedy Mirror Descent algorithm (10) by mod-
ifying it as follows. To compute x,,;, instead of considering VF(x,), we perform the
gradient descent starting from a point y, (which will be defined in a moment) of the
dual space: y, — 7,V f(x,). We then map the latter point back to the primal $pace via
VF* and then perform the projection onto X with respect to Dy. This gives the Lazy
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primal space

Figure 5. — Lazy Mirror Descent

Mirror Descent algorithm, also called Dual Averaging [Nes09] which starts at some
point x; € X and iterates

Xi41 = arggin Dg (x, VF*(y, — thf(xt))) . (13)
xX€

Besides, we perform the update y,,; = y, — v,V f(x,). If the algorithm is started with
y; = 0, we have y, = — Ei;i 1.V f(x,) for all > 1. Then, one can easily check that

(13) has the following simpler expression:
x> + F(x)} , (14)

V.V f(x) + VE(x ) = ylx — x40, VxeX, x,€X

t
X, = argmin { <E Y,V f(x,)
s=1

xeX

as well as a variational chara&erization:

For the simple problem convex optimization that we are dealing with, this lazy algo-
rithm provides similar guarantees as the greedy version (10) —compare [Nes09, Theo-
rem 4.3] and [BT03, Theorem 4.1]. However, it has a computational advantage over
the latter: the iteration in Equation (11) which gives x,,; from x, involves the suc-
cessive computation of maps VF and VF*, whereas iterating (13) only involves the
computation of VF* and the Bregman projection.

Online Mirror Descent

Interestingly, the above convex optimization algorithms can be used for the on-
line convex optimization problem presented above. The first approach of this kind
was proposed by [Zin03], who adapted algorithm (7) to the framework where the
Decision Maker faces a sequence ( f,),-; of loss functions, instead of a function f that
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is constant over time. The Greedy Online Gradient Descent algorithm is obtained by

simply replacing V f(x,) in (7) by V f,(x,):
Xeyl = P;Oj {x, =7,V filx)},

which can alternatively be written

. 1
sy = argmin { (V1)) + 5 s — w2 .
xeX Tt

By introducing a function F satistying the same assumptions as in the previous section,

we extend the above to a family of Greedy Online Mirror Descent algorithms [Bub11,
BCBI12]:

X,,] = argmin {(Vft(xt)]x) + ,}/lDF@C’ xt)} . (15)

xeX t

Similarly, we can also define a lazy version [SS07, S§11, KSST12, OCCB15]:

% = argmin { <2 YV £ () > " F<x>} . (16)

xeX
More generally, we can define the above algorithms by replacing the gradients
V f,(x,) by arbitrary ve&ors u, € R? which need not be the gradients of some func-
tions f,. For instance, the Lazy Online Mirror Descent algorithm can be written:

t
X,,] = argmax E ulx ) —F(x) p,
xeX s=1

where F a&s a regularizer. This motivates, for this algorithm, the alternative name:
Follow the Regularized Leader [AHRO8, RT09, AHR12]. This algorithm provides a

guarantee on:

T T

max Y (,]x) — 3 (%)

xeX 15 =1
which is the same quantity as in Equation (x), i.c. the regret in the online linear op-
timization problem with payoff vecfors (u,),~;. An important property is that payoft
ve&or u, is allowed to depend on x,, as it is the case in (16) where u, = —v,V f(x,).
This Lazy Online Mirror Descent family of algorithms will be our subject of study in
Chapters I to IV. Throughout Part I of the manuscript, unless mentioned otherwise,
Mirror Descent will designate the Lazy Online Mirror Descent algorithms.

s
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CHAPTERI

MIRRORDESCENT FORREGRET
MINIMIZATION

We present the regret minimization problem called online linear optimization.
Some convexity tools are introduced, with a $pecial focus on §trong convexity. We
then construct the family of Mirror Descent strategies with time-varying parameters
and derive general regret guarantees in Theorem 1.3.1. This result is central as most
results in Part I will be obtained as corollaries. In Section 1.4, we present the
generalization to convex losses (instead of linear payoffs), and in Se&ion 1.5, we turn
the aforementioned regret minimizing strategies into convex optimization
algorithms.

I.1. Core model

The model we present here is called online linear optimization. It is a repeated play
between a Decision Maker and Nature. Let 7” be a finite-dimensional vector space,
7* its dual $pace, and denote (- |-) the dual pairing. 7"* will be called the payoff
$pace®. Let & be a nonempty convex compac subset of 77, which will be the set of
actions of the Decision Maker. At each time instance ¢ > 1, the Decision Maker

e chooses an a&ion z, € Z;
e observes a payoff ve&tor u, € 7°* chosen by Nature;
e gets a payoff equal to (1,|z,).

Formally, a strategy for the Decision Maker is a sequence of maps 0 = (0,),5;
where o, : (Z x ¥*)"1 — Z. In aslight abuse of notation, o; will be regarded as an
clement of %. For a given strategy o and a given sequence (1, ), of payoft vectors, the

sequence of play (z,),; is defined by

2, = 0,(2, Uy, s 2y Uy_y), E 21

1. The dimension being finite, it would be good enough to work in R?. However, we believe that
the theoretical digtin&ion between the primal and dual §paces helps with the understanding of Mirror
Descent strategies.

31
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Concerning Nature, we assume it to be omniscient. Indeed, our main result, Theo-

rem [.3.1, will provide guarantees that hold against any sequence of payoff vectors.

Therefore, its choice of payoff vector #, may depend on everything that has happened

before he has to reveal it. In particular, payoff ve¢tor #, may depend on attion z,.
The quantity of interest is the regrez (up to time T > 1), defined by

T T
chr {O" (”t)t)l} = rzrgzxg <”t‘z> - E <ut‘zt> , T>1L

t=1

In most situations, we simply write RegT since the strategy and the payoffs vectors

will be clear from the context. In the case where Nature’s choice of payoff veors
(#,),1 does not depend on the a&tions of the Decision maker (Nature is then said to be
oblivious), the regret can be interpreted as follows. It compares the cumulative payoff

E;le (u,|z,) obtained by the Decision Maker to the best cumulative payoft Zthl (u,)z)
that he could have obtained by playing a fixed action z € % at each stage. It therefore
measures how much the Decision Maker regrezs not having played the constant strat-
egy that turned out to be the best. When Nature is not assumed to be oblivious (it
is then said to be adversarial), in other words, when Nature can rea& to the a&ions
(2,);>1 chosen by the Decision Maker, the regret is still well-defined and every result
below will stand. The only difference is that the above interpretation of the regret is
not valid.

The first goal is to construct strategies for the Decision Maker which guarantee
that the average regret £R is asymptotically nonpositive when the payoff ve&ors
are assumed to be bounded. In Se&ion 1.3 we constru& the Mirror Descent $trate-
gies and derive in Theorem [.3.1 general upper bounds on the regret which yield such
guarantees.

One of the simplest strategies one can think of is called Follow the Leader or Ficti-
tious Play. It consists in playing the action which would have given the highest cumu-
lative payoff over the previous stages, had it been played at each stage:

> . (L1)

Unfortunately, this strategy does not guarantee the average regret to be
asymptotically nonpositive, even in the following simple setting where the
payoff ve&ors are bounded. Consider the framework where 7 = ¥+ = R?
Z = A, = {(21,2,) € R% |z, + 2, = 1} and where the payoff vetors all belong to
[0, 1]2. Suppose that Nature chooses payoff ve&ors

e S e}

z€% s=1

t—1
zZ, € argmax <E Uy
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Then, one can easily see that using the above strategy (I.1) gives forz > 2,z, = (1, 0) if
tiseven,andz, = (0, 1) iftisodd. Asaresult, the payoff (#,|z,) iszero as soonast > 2.
The Decision Maker is choosing at each stage, the action which gives the worst payoff.

As far as the regret is concerned, since max, Ethl (u,|z) is of order T /2, the regret
grows linearly in T. Therefore, the average regret is not asymptotically nonpositive.
This phenomenon is called overfitting: following too closely previous data may result
in bad predi&ions. To overcome this problem, we can try modifying strategy (I.1) as

t—1
z, = argr;ax { <E u, z> — h(z)} ,
z€ s=1

where we introduced a fun&ion b in order to regularize the strategy. This is the key
idea behind the Mirror Descent strategies (which are also called Follow the Regularized
Leader) that we will define and $tudy in Seéion 1.3.

1.2. Regularizers

We here introduce a few tools from convex analysis needed for the constru&tion
and the analysis of the Mirror Descent strategies. These are classic (see e.g. [SSO07,
SS11, Bub11]) and the proofs are given for the sake of completeness. Again, 7" and
9* are finite-dimensional ve&ors §paces and & is a nonempty convex compact subset
of 7". We define regularizers, present the notion of strong convexity with respect to
an arbitrary norm, and give three examples of regularizers along with their properties.

I.2.1. Definition and properties

We recall that the domain dom b of a fun&ion h : ¥ — R U {+oco} is the set of
points where it has finite values.

Definition 1.2.1. A convex fun&ion b : ¥ — R U {+oo} is a regularizer on % if
it is stri¢tly convex, lower semicontinuous, and has & as domain. We then denote
9), = maxgy h— ming b the difference between its maximal and minimal values on %.

Proposition 1.2.2. Let b be a regularizer on %. Its Legendre—Fenchel transform b* :
7+ — R U {+o0}, defined by

h*(w) = sup {(w|z) —h(z)}, weT*,

eV

satisfies the following properties.
(i) dombh* = 7*;
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(i) b* is differentiable on V*;
(iii) Forallw € 7*, Vh*(w) = argmax___ {(w|z) — h(z)}. In particular, Vb* takes
values in Z.
Proof. (i) Let w € 7°*. The fun&ion z + (w|z) — h(z) equals —co outside of &,

and is upper semicontinuous on % which is compact. It thus has a maximum and
h*(w) < 4oo.

convex. Besides, forz € 7" andw € 7+
z€ b (w) <= wedb(z) << zecargmax{(w|z’)—h(z")},
2 cx
in other words, 0b* (w) = arg max , _ {(w|z') — h(z")}. This argmax is a singleton as
we noticed. It means that b* is differentiable. ]

Remark 1.2.3. The above proposition demonstrates that b* is a smooth approxima-
tion of max, , (-|z) and that VA* is an approximation of arg max___(-[z). They

will be used in Section 1.3 in the constru&ion and the analysis of the Mirror Descent
$trategies.

As soon as b is a regularizer, the Bregman divergence of h* is well defined:
Dy (w',w) = b*(w') — b*(w) — (Vh*(w)|w —w), w,w € V*.

This quantity will appear in the fundamental regret bound of Theorem 1.3.1. As we
will see below in Proposition 1.2.8, by adding a §trong convexity assumption on the
regularizer b, the Bregman divergence can be bounded from above by a much more
explicit quantity.

1.2.2. Strong convexity

Definition 1.2.4. Leth : ¥ — R U {+oo} be a fun&ion, |- | a norm on 7, and
K > 0. b is K-strongly convex with respect to | - || if for all z, 2" € 7" and A € [0, 1],

KA1 - )
2

Proposition 1.2.5. Lezr b : " — R U {+oo} be a function, |- | a norm on V", and
K > 0. The following conditions are equivalent.

(i) b is K-strongly convex with respect to | - ||;
(i) For all points z,2" € V" and all subgradients w € dh(z),

bz + (1—N)z") < Mh(z) + 1 —N)b(z') — Iz’ — z|”. (12)

h(z') > h(z) + (w2’ —z) + % Iz’ — z|*; (L3)
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(i1i) For all points z,z" € V" and all subgradients w € 0h(z) andw’ € dh(z'),
W —wlz’ —z) > K|z — 2. (1.4)

Proof. (i) => (ii). We assume that b is K-strongly convex with respe to |- ||. In
particular, b is convex. Let z,2" € 7", w € dh(z), A € (0,1), and denote 2" =
Az + (1—1)z’. Using the convexity of h, we have

(wlz” —2) _ h(z") —h(z)

e’ —2) = 1—1 ST
< o3 (W00 + a= by - B g o - bio) )
= (&)~ h(e) — S5~ 2l

and (L.3) follows from taking A — L.

(ii) = (i). Letz,2" € ",°A € [0,1], denote 2”7 = Az + (1—X)z’. If X € {0,1},
inequality (I.2) is trivial. We now assume A € (0, 1). If z or 2’ does not belong to the
domain of b, inequality (I.2) is also trivial. We now assume z, z" € dom h. Then, z”
belongs to |z, z’[ which is a subset of the relative interior of dom h. Therefore, 0h(z”)
is nonempty (see e.g. [Roc70, Theorem 23.4]). Letw € 0h(z”). We have

K

(wlz — 2") <h(z) — h(z") = o |z = 2"
K
(wlz' = 2") < h(z) = hiz") = 5 | = "I

By multiplying the above inequalities by A and 1 — A respectively, and summing, we
get
0 < Mo(z) + (1= Wh(z') — h(z") — % (Mz—2"I?+A=N)z" —2"|%) .

Using the definition of 2”7, we have 2 —2” = (1—4)(z' —2) and 2’ — 2" = A(2’ —2).
The last term of the above right-hand side is therefore equal to

= = ol 4 =g —af?) = S

and (L.2) is proved.
(i) = (iii). Let z,2" € 7", w € 0h(z) and w’ € dh(z’). We have

b(z') > b(z) + (wlz —2) + % 2 — | (L5)

h(z) > h(z') + W'z —2') + % Iz’ — z|*. (16)
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Summing both inequalities and simplifying gives (1.4).

(iii) = (ii). Letz,2" € ¥". If 0h(z) is empty, condition (ii) is automatically
satisfied. We now assume 8h(z) # 0. In particular, z € domh. Letw € 0h(z). If
h(z') = +oo, inequality (1.3) is satisfied. We now assume 2z’ € dom h. Therefore,
we have that |z, 2/[ is a subset of the relative interior of dom h. As a consequence, for
all points z” €]z, z’[, we have dh(z”) # 0 (see e.g. [Roc70, Theorem 23.4]). For all
A € [0,1], we define 2y = z + A(2" — 2). Using the convexity of b, we can now write,
foralln > 1,

n n

h(Z/) - h(Z) = Zh(zk/n> Z(k— l/n E < (k—1)/n

k=1 k=1

Zk/n — Z(k—1) /n> >

where wy = wand wy, € 9h(z,) for k > 1. Since 2}, — 21/, = +(z' — z) for
k > 1, subtracting (w|z" — z) we get

h(z')—h(z) — (w|z' —z) > 1 zn: <w(k_1>/n — w’z’ — z> :

a

—_

Note that the first term of the above sum is zero because w = w,,. Besides, for £ > 2
we have 2" — 2 = %5(2(4_1);, — 2). Therefore, and this is where we use (iii),

o1
h(z') — h(z) — (w[z’ —z) Z r—1 < (k-1)/ ‘z(k—l)/n - Z>
k=2
501 2
>K Z k—1 Hz(k—l)/n N ZH
k=2

K|z —z|* &

- 2 Z(k —1)
k=2
/7 2
o S P,
and (ii) is proved. ]

Similarly to usual convexity, there exists a strong convexity criterion involving the
Hessian for twice differentiable functions.

Proposition 1.2.6. Let |- | be a norm on ¥, K > 0, and F : V" — R a twice differen-
tiable function such that

(VZE(z)u|u) > K lu|>, z€eV,uec?.

Then, F is K-strongly convex with respect to | - |.
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Proof. Let z,2" € 9. Let us prove the condition (ii) from Proposition 1.2.5. We
define
d(A) =F(z+A(z' —2)), r€]0,1].

By differentiating twice, we get forall A € [0, 1]:
¢”(A) = (V*E(z + Mz — 2))(z' —2)|z’ —2) > K|z’ — z|)*.

There exists A € [0, 1] such that $(1) = $(0) + ¢’(0) + ¢”(Ay)/2. This gives

F&') = (1) = $(0) + ¢/(0) + 20 > Fle) 4 (VR —2) + 5 |2/ — I,

and (1.3) is proved. ]

Lemma.2.7. Let |- | anormon ¥, K > 0and b, F : ¥ — R U {+o0} fwo convex
Sfunctions such that for all z € V',

Then, if F is K-strongly convex with respect to || - |, so is h.

Proof- Note thatforallz € 7, F(z) < b(z). Let us prove that b satisfies the condition
from Definition [.2.4. Let 2,2 € 7°,°A € [0,1] and denote 2”7 = Az + (1 — A)z’. Let
us first assume that h(z”) = +oo. By convexity of b, either h(z) or h(z’) is equal to
+o0, and the right-hand side of (1.2) is equal to +oc. Inequality (1.2) therefore holds.
If h(z") is finite,

1—
D) = F(&") < XF(z) + (1 - DEE) — 20 M g
1—
< M(z)+ 1 —="N)h(z") — M Iz —z|*,
and (L.2) is proved. []
For a given norm | - | on 7", the dual norm | - || on 7" is defined by

[wll, = sup [(w]z)].
Jal<1

Proposition 1.2.8. Le# K > 0and b : ¥ — R U {+oo} be a regularizer which we
assume to be K-Strongly convex function with respect to a norm || - | on V. Then,

1
Dy (w',w) < K [w’ —w||i, w,w' € V.
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Proof’ Let w,w’ € 7"* and denote z = Vh*(w) and 2 = Vh*(w’). Moreover, for
A € [0,1], we introduce wy = w + AMw’ — w) and 2y = Vh*(w,). Therefore, we
have w € 8h(z) and wy, € 8h(zy). b being strongly convex, condition (1.4) gives
(w;, — wl|z, — z) > K||z3, — 2. Usingthe definition of | - |, and dividing by |2y, — |
gives

1
23, — 2] < g fwn =l .

Now consider $(A) = h*(wy ) defined for A € [0, 1]. We have
¢'(1) = ¢'(0) = (' — w|Vh"(w;) — Vb*(w)) = (' —wlz) — 2)

1
S’ —wl g — 2] < g fwn —wll o’ —wl,

A
= gl =l
*

K
By integrating, we get
2

80— 9(0) < (0D + o’ —wl?,

which for A = 1boils down to

1
b (w') = b (w) < (W' —w|Vh"(w)) + 5= |’ — wl?.

In other words, D (w’, w) < 5k |0’ — wlli. =

1.2.3. The Entropic regularizer

Denote A, the unit simplex of R%:

Ad:{ZGRi

d .
Zz‘ zl},
i=1

where Rﬁ is the set of veors in R with nonnegative components. We define the
entropic regularizer b, : R4 — R U {+oo} as

d i i
b (z) = {Eizlz logzt ifze Ay

+o0 otherwise,

where 2’ logz’ = 0 when z' = 0.
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Proposition1.2.9. (i) b, is a regularizer on Ay;
d
(i) bty (w) = log (E exp w’),for allw € RY%;
i=1

(iii) Vhi, (w) = (%) ,for allw € RY;
Zj:l exp w/ '
1<j<d

(iv) 9, = log d;
() hen is 1-STrongly convex with respect to | - ||

Proof. (i) is immediate, and (ii) and (iii) are classic (see e.g. [BV04, Example 2.25]).
(iv) by, being convex, its maximum on A, is attained at one of the extreme points.

At each extreme point, the value of b, is zero. Therefore, max, b, = 0. As for the
minimum, b, being convex and symmetric with respet to the components 2/, its
minimum is attained at the centroid (1/4, ...,1/d) of the simplex A, where its value

is —logd. Therefore, miny b, = —logdand 3, =logd.
(v) Consider F : R4 — R U {+co} defined by

d (i i i . d
F(z):{zizl(zlogz Z)+1 ifzeRE

+oo otherwise.

Let us prove that F is 1-strongly convex with respec to | - |, By definition, the do-
main of Fis R%. It is differentiable on the interior of the domain (R* )* and VF(z) =
(logz"),<;<y for z € (R )% Therefore, the norm of VF(z) goes to +co when z con-
verges to a boundary point of R%. [Roc70, Theorem 26.1] then assures that the subd-

ifferential 0F(z) is empty as soon as z ¢ (R* )?. Therefore, condition (iii) from Propo-
sition [.2.5, which we aim at proving, can be written

(VE(z') = VE(z)|z' —2) > &' — =]

[ %7€ (R%)4. (L7)

Letz, 2’ € (R%)%

(VF(z') — VF(z)|z' —z) = Y, log

A simple study of funéion shows that (s — 1) logs — 2(s — 1)*/(s +1) > 0 fors > 0.
Applied with s = (2’)" /2, this gives

z

d ’\i
Yiog WL (@ —2) > | — 2t
i=1
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and (L7) is proved. F is therefore 1-§trongly convex with respect to | - || and so is by,
thanks to Lemma [.2.7. []
I.2.4. The Euclidean regularizer

Let & be a nonempty convex compact subset of R%. We define the Euclidean reg-

ularizer on & as ,
1 .
o - {18 e

+o0 otherwise.

Proposition 1.2.10. (i) b, is a regularizer on Z;

(i) Zb;(w) = proj,, (w) for allw € R where proj, is the Euclidean projection onto
(iii) b, is 1-Strongly convex with respect to || - | -
Proof. (i) is immediate.

(ii) For all w € R%, using property (iii) from Proposition 1.2.2,

: 1 1 1o
V(1) = argmas { (wlz) — [ | = argmin { 3 I<I} — (wle) + 3 Il |

. 2 .
= argmin |w — z|; = proj(w).
2€% &

(iii) We consider F : RY — R defined by F(z) = 1 HzH; for all z € R%. Its Hessian
at all points z € 7" is the identity matrix and for all veGtors u € R, we have

(V2E(z)ulu) = |ul; .

Thanks to Proposition 1.2.6, F is 1-strongly convex with respect to |- |, . Using
Lemma [.2.7, we deduce that b, is also 1-strongly convex with respect to | - || [

1.2.5. The ¢? regularizer
For p € (1,2), we define for any nonempty convex compact subset Z of R%:
1 2.
sz ifze
o {zn 2
+oo  otherwise.

Proposition 1.2.11. (i) b, is a regularizer on Z;
(ii) b, is (p — 1)-Strongly convex with respect to || - ||p
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Proof. (i) Since p > 1, |- || is a norm and is therefore convex. b, then clearly is a

regularizer on Z.
(ii) We consider the fun&tion F(z) = 5 ||z|| defined on R which is ( p—1)-strongly

convex with respect to | - ”p (see e.g. [Bubll, Lemma 3.21]). Then, so is b, thanks to
Lemma [.2.7. O

I.3. Mirror Descent strategies

We now construct the family of Mirror Descent strategies with time-varying pa-
rameters and derive in Theorem [.3.1 general regret bounds. A discussion on the ori-
gins of Mirror Descent is provided in the introduction of the manuscript. We con-
sider the notation introduced in Se¢tion I.1. Let b be a regularizer on the action set &
and (7,),5 a positive and nonincreasing sequence of parameters. The Mirror Descent
strategy associated with b and (v,),, is defined by Uy = 0 and for # > 1by

play a&tion z, = Vbh*(n,_;U,,),
update U, =U, | +u,

which implies U, = ¥'_ u.. Since Vh* takes values in & by Proposition 1.2.2, z, is
indeed an action. Besides, z, only depends on payoff vectors up to time ¢—1. Therefore,
the above is a valid §trategy. Using property (iii) from Proposition 1.2.2, it can also be

written
zt:argmax{<zu >—h()}
2€Z Ne—1

This expression clearly demonstrates that the strategy is a regularized version of Fol-
low the Leader (I.1) which would give arg max___ <Et_1 u

s=]1"7$

see that the higher is p